

PROGRAMMING

USING SCILAB

THEORY & PRACTICALS

For B.Sc. Course of Pondicherry University

AKHILESH KUMAR

i

© Copyrights reserved with the author-2022

iii

ACKNOWLWDGEMENTS

In the accomplishment of this book there is contribution of many people in terms of

their support, encouragement, and assistance at multiple occasions and phases of writing of

the book. I take this opportunity to acknowledge their important contributions with gratitude.

I wish to express my sincere gratitude towards the Dr. N. Viyasarayar, the Principal of

Arignar Anna Government Arts & Science College, Karaikal, for his always welcoming

behaviour and best wishes to make this book get compiled.

I extend my sincere thanks to Thiru. V. Karuppaiya Pillai, the Head, Department of

Mathematics, Arignar Anna Government Arts & Science College, Karaikal for his everlasting

support and encouragement for working towards the betterment of students in any possible

mannar. I extend my gratitude to Dr. J. Prakash, Assistant Professor, Department of

Mathematics, Avvaiyar Governmant College for Women, Karaikal for his inputs on Scilab

package on differential equations. The best wishes of all faculty members of the Department

of Mathematics and other Departments of Arignar Anna Government Arts & Science

College, Karaikal are acknowledged.

A sincere thanks are due to Prof. Aparna Mehra, Professor, Department of of

Mathematics, Indian Institute of Technology, Delhi for guiding me at every level of my

career in academics and research and enabling me to compile my knowledge in the form of a

book.

I wish to record my profound gratitude to my parents, relatives and friends for their all

kinds of support and help for myself devoting additional time towards academic activities.

Thank you all.

(Dr. AKHILESH KUMAR)

Assistant Professor,

Department of Mathematics,

Arignar Anna Government Arts & Science College,

Karaikal

Dedicated to

my Parents

Shri. Omprakash Shastri and Smt. Promila Shastri

v

CONTENTS

Acknowledgements iii

Preface vii

Chapter 1 An Introduction to Scilab 1

Chapter 2 Matrices 17

Chapter 3 Scilab Programming 44

Chapter 4 Functions 55

Chapter 5 Plotting 60

Chapter 6 Solving Ordinary Differential Equations 70

Chapter 7 Polynomials in Scilab 76

List of conferences 231

vii

Preface

This book has come up mainly to help the students of fifth semester of B.Sc.

Mathematics course of Pondicherry University for their theory and practical papers on Scilab.

I have made my best efforts for writing this book which should enable the students to

understand the concepts by self-study itself. For this purpose, there is a plethora of exemplary

demonstrations through codes and figures.

The book comprises of seven chapters followed by the bibliography.

The Chapter 1 gives a basic introduction to Scilab giving basic idea on how to install

Scilab, it components, and its use for basic mathematical calculations. The use of matrices

and matrix operations in Scilab is introduced in Chapter 2. In Chapter 3, fundamentals of

programming in Scilab as a programming language are introduced. Chapter 4 discusses on

developing Scilab programs as functions for use of the outputs in further computations.

Chapter 5 is about plotting of graphics. The Scilab package for numerically solving ordinary

differential equations with initial conditions is discussed in Chapter 6. Dealing with

polynomials using Scilab is detailed in Chapter 7.

It is suggested for readers of this book to learn each of introduced concepts practically

through a side-by-side implementation and experimentation of provided examples and

exercises in Scilab. I hope that readers will enjoy the reading and learning of practical

concepts through the book.

Karaikal, 07-01-2022

Chapter 1: An Introduction to Scilab

Scilab is open source software and can be downloaded for installation from the

web page of its developer organization viz.: https://scilab.org. The developer

organization is presently owned by ESI group. Scilab is supported on UNIX, Macintosh,

and Windows environments.

Scilab is an interactive software system for developed for numerical

computations and graphics. It is especially designed for matrix computations: solving

systems of linear equations, performing matrix transformations, factoring matrices,

and so forth. The developers of Scilab have created libraries of a large number of inbuilt

mathematical functions. Over that, developers have supplemented Scilab with a wide

range of packages of inbuilt programs, called toolboxes. These toolboxes, which are

collections of inbuilt programs, have been developed for solving different problems of

specific areas of practical applications by following specific methods or algorithms.

Further, Scilab is developed to work as a programming language also, in a sense

that the users can code their programs also just like any other programming language

like C, C++ etc. Also, the inbuilt functions can be used into the users’ programs. In

addition, it has a variety of graphical capabilities, and can be extended through

programs written in its own programming language. This feature of Scilab makes it

user friendly interactive software.

Just like its commercial counterpart MATLAB, in Scilab also all the types of

variables namely, real, complex, Boolean, integer, string and polynomial variables, are

considered as matrices. Another salient feature of Scilab is that it understands the

difference between real numbers and purely real complex numbers.

Scilab Advantages

 It simplifies the analysis of mathematical models

 It frees you from coding in lower-level languages (saves a lot of time but with some

computational speed penalties)

 Provides an extensible programming/visualization environment

 Provides professional looking graphs

Scilab Disadvantages

The only disadvantage of Scilab over the lower level computational programming

languages is that it being an interpreted (i.e., not a pre-compiled) language can turn out

as slow during large scale computations.

https://scilab.org/download/6.1.1

Programming using SCILAB Page 2

Remark: The choice of preferring Scilab over lower level computational programming

languages depends upon the requirement of its additional graphics features and

availability of inbuilt programs over the scale of the data of the problem to be solved.

1.1 Getting Started

Here, we will learn about the installation and use of the software in Windows

operating system. Its use is similar in other operating systems also. Installation of the

software is easy like any other software. The software gets ready after its installation

into a computer system. Just like any other software, Scilab can be opened by Double

clicking on the Scilab icon in desktop or by clicking on the icon appearing after the

entering the name Scilab in the Windows search bar. The Scilab window should come

up on your screen. It looks like this:

This window is the default layout of the Scilab desktop. It is a set of tools for

managing files, variables, and applications associated with Scilab.

1. The Console is a command window used for entering Scilab functions and other

commands at the command line prompt appearing as -->

2. The Command History Window is used to view or execute previously run

functions.

3. The Current Directory/Workspace Window lists the folders/files in the Current

Directory (where you are working) or the values and attributes of the variables you

have defined.

Programming using SCILAB Page 3

4. The Current Directory line at the top tells you where Scilab thinks your files are

located. This should always point to the folder that you are working in so that your

files are saved in your own directory. An example would be to enter the pathname

C:\Users\Maths50\Scilab\yourname

or use the ... button to browse for a folder.

This should always be done at the start of a new session. When you open a Scilab

document, it opens in the associated tool. If the tool is not already open, it opens

when you open the document and appears in the position it occupied when last

used. Figures open undocked, regardless of the last position occupied.

5. Scilab provides a variable browser, which displays the list of variables currently

used in the environment.

6. The Editor, named as SciNotes, is used to access and edit Scilab program files. The

Scilab program files are called script files. The editor can be accessed from the menu

of the console, under the Applications > SciNotes menu, or from the console, as

presented in the following session.

--> editor()

7. Script Files: Script files are normal ASCII (text) files that contain Scilab commands.

There are two types of script files in Scilab, namely, programs and functions. It is

essential to suffix an appropriate extension name after these files. Extension name

for program files is “.sce” (e.g., scriptname.sce) and for functions is “.sci” (e.g.,

functionscript.sci).

8. Executing a Script file

A script file can be executed using exec command, for example:

-->exec('D:\Puducherry\Class_2021_10_12_for_Loop.sce', -1)

This execution can alternatively be done by pressing the function key F5 while

keeping the the script file in SciNotes as active Window.

9. Calling a function program

A function program can be called by typing its “calling sequence” appropriately in

the Scilab console while supplying appropriate values of input arguments.

Remark: If a user programmed function is to be called for computation, then user

must execute it before calling the same, in every Scilab session or in case the

function program is edited by the user.

Programming using SCILAB Page 4

1.2 Using Scilab as a calculator

The basic arithmetic operators are + for addition, - for subtraction, * for

multiplication, / for division, ^ for exponentiation, and these are used in conjunction

with braces or commonly called round brackets (). The symbol ^ is used to get

exponents (powers): 2^4 = 16. An alternative symbol used for the same purpose is

**.

Example:

--> 2+3/4*5

ans =

 5.7500

Note that in this calculation the result was 2+(3/4)*5 and not 2+3/(4*5) because

Scilab works according to the priorities of operations given in the following order.

1. quantities in brackets ()

2. powers or exponent ^ or **

3. multiplication *, left division /, and right division \, working left to right

4. addition + and subtraction -, working left to right

1.3 Basic Elements of Scilab as a Programming Language

As Scilab is an interpreted language, therefore there is no need to declare the

type of a variable before using it. Variables are created by Scilab at the moment when

they are first set (i.e., assigned a value). A value is assigned to a variable using the

assignment operator, as detailed below.

Assignment Operator

 The assignment operator “=” is used for assigning a value (or a matrix) to

variable. On the left hand side of “=” is placed a variable name to which the value on

right hand side is to be assigned. For example, let us observe the following Scilab

command demonstrating the use of assignment operator.

-->x=1

 x =

 1.

Programming using SCILAB Page 5

There are rules of defining variable names for their use in Scilab. These are given below.

Variable Names

Variable names may be as long as the user wants, but only the first 24 characters

are taken into account in Scilab. For consistency, we should consider only variable

names which are not made of more than 24 characters. All ASCII letters from "a" to "z",

from "A" to "Z" and from "0" to "9" are allowed, with the additional letters "%", "_", "#",

"!", "$", "?".

Caution: Variable names for which the first letter is "%" have a special meaning in

Scilab. These represent the mathematical pre-defined variables, which are discussed in

a later section.

Variable names which are allowed and not allowed in Scilab are illustrated below.

Allowed: NetCost, Left2Pay, x3, X3, z25c5

Not allowed: Net-Cost, 2pay, %x, @sign

Pre-defined mathematical variables

Variable Name Description

%pi the mathematical constant 𝜋

%e Euler’s constant 𝑒

%i the imaginary number 𝑖

Input and output of Mathematical values in Scilab

Apart from the real numbers (expressed in the natural way), complex numbers

and Booleans are provided as inputs to Scilab in the formats given below.

 Complex numbers

Example: The complex number 2 + 3𝑖 is input in Scilab as: 2 + 3 * %i .

 Booleans

The truth value “True” is input in Scilab by using %t or %T, whereas the truth value

“False” is input using %f or %F.

Both these are discussed in detail in later sections.

Programming using SCILAB Page 6

Strings

String is a sequence of characters. All the characters including all letter in both

cases (i.e., from a to z and from A to Z), digits from 0 to 9 can be used in a string. Strings

can be defined and then stored to any variable names by delimiting them in double

quotes “ ” . Let us learn how to define strings through examples given below.

-->A = "Scilab"

 A =

Scilab

-->B = "Software"

 B =

Software

Remarks:

 Strings have no direct mathematical use.

 They are used mainly for displaying a lingual message as a part of the output

upon the execution of a program.

The concatenation (i.e., join) of two strings can be done by using the

concatenation operator (+). The use of concatenation operator is demonstrated below

through a Scilab session.

-->"Scilab" + "Software"

 ans =

ScilabSoftware

-->A+B

 ans =

ScilabSoftware

-->A + " " + B

 ans =

 Scilab Software

It is to be observed that only a string can be concatenated with a string. The

concatenation of a string with a number is not possible. For this purpose, a function

“string” is available in Scilab which converts a number to the string corresponding to

Programming using SCILAB Page 7

that number. This function can be used appropriately in a situation when there is a

requirement of displaying an output message including the output value of some

computation also. For example,

-->a = 1

 a =

 1.

-->b = 2

 b =

 2.

-->c = a + b

 c =

 3.

-->"The sum of " + string(a) + " and " + string(b) + " is " +

string(c) + "."

 ans =

 The sum of 1 and 2 is 3.

Suppressing the display of output

The output of any command can be suppressed by ending the command that

particular command with semicolon “;”. For example, the Scilab command in console

-->x = 2

is returned with a display of the action performed as following

x =

 2.

Whereas, the Scilab command

-->x = 2;

does not display the action performed but will keep output in the computer’s temporary

memory being used, in exactly same way as was done in the previous command. The

value of this output for the variable x will remain there in the temporary memory

(RAM) for further use, unless it changes by reassigning some other value to this variable

Programming using SCILAB Page 8

or the Scilab session is closed. Irrespective of the display of the output, the value

assigned to the variable x can accessed any time from the variable browser in both the

cases discussed above.

Dynamic nature of variable in Scilab

As Scilab is an interpreted language, therefore it allows dealing with variables in

a dynamic way. The dynamic nature being referred here is in the sense that a variable

set to a value of one particular type can later be used to reassign a value of different

type also. The same is illustrated below in a Scilab session in Console.

-->x = 2 + 3 * %i

 x =

 2. + 3.i

-->y = 4*x

 y =

 8. + 12.i

-->x = 5

 x =

 5.

-->y = 2*x

 y =

 10.

Comments and continuation lines

Any text that follows // in a line is ignored by the compiler. The main purpose of

this facility is to enable inserting comments in the script files. Inserting comments in a

script file helps the programmer to read the code of a program with the help of

summary messages about the commands. This provision of putting any line as a

comment can be exploited even for editing or debugging script files also.

Commands which are too long to be typed in a single line can be continued in

multiple subsequent lines by putting two dots at the end of each previous line. In Scilab,

Programming using SCILAB Page 9

any line which ends with two dots is considered to be the start of a new continuation

line.

In the following Scilab session in Console, we give examples of Scilab comments and

continuation lines.

-->// This is my comment .

-->x =1..

-->+2..

-->+3..

-->+4

 x =

 10.

Remark: At this stage of introduction of Scilab, the use of comments and continuation

lines is demonstrated here through Console, but they are more justifiably used in script

file also.

1.4 Elementary mathematical functions

Scilab has in-built elementary mathematical functions for their direct use into

computations. Most of these functions take one input argument and return one output

argument. These functions are vectorized in the sense that their input and output

arguments are matrices. This allows computing data with higher performance, without

any loop. The list of elementary mathematical functions is present in following tables.1

Function

Name
Syntax Type of variable as

input argument
Description

exp exp(X)

scalar, vector, or

vector (real or

complex entries)

exp(X) is the (element-wise)

exponential of the entries of X.

expm expm(X)

a square matrix with

real or complex

entries.

If X is a square matrix
then expm(X) is the matrix

expm(𝑋) = 𝐼 + 𝑋 +
𝑋2

2!
 + ⋯

log log(x)
scalar, vector or
matrix

log(x) is the "element-wise"

1 A detailed description of these functions can be accessed from the help document of Scilab, which is
available within the software and on the website of the Scilab developers as well.

Programming using SCILAB Page 10

logarithm 𝑦(𝑖, 𝑗) = 𝑙𝑜𝑔 𝑥(𝑖, 𝑗)

log10 log10(x)
scalar, vector or

matrix
base 10 logarithm

log1p log1p(x)
scalar, vector or

matrix

log1p(x) is the "element-wise"
log(1 + 𝑥) function.
y(i,j)=log(1 + x(i,j)). This
function, defined for x > -1,
must be used if we want to
compute log(1+x) with
accuracy for |x| << 1.

log2 log2(x)
scalar, vector or

matrix

log2(x) is the "element-wise"
base 2 logarithm
y(i,j)=log2(x(i,j)).

logm logm(x) square matrix

logm(x) is the matrix
logarithm of x. The result is
complex if x is not positive or
definite positive. If x is a
symmetric matrix, then
calculation is made by Schur
form. Otherwise, x is assumed
diagonalizable. One has
expm(logm(x))=x.

max max(A)
vector or matrix with

real number values
maximum value of matrix A

min min(A)
vector or matrix with

real number values
minimum value of matrix A

modulo modulo(n,m) integers
remainder of n divided

by m (n and m integers)

pmodulo pmodulo(n,m) integers

positive arithmetic remainder

of n divided

by m (n and m integers)

sign sign(A)
real or complex

matrix

returns the matrix made of the

signs of A(i,j). For complex A,

sign(A) = A./abs(A).

signm signm(A)
real or complex

matrix

for square and Hermitian

matrices X=signm(A) is matrix

signum function.

sqrt sqrt(x)
real or complex scalar

or vector

returns the vector of the

square root of the 𝑥 elements.

Result is complex if x is

negative.

sqrtm sqrtm(x)
real or complex

square matrix

the matrix square root of

the x x matrix (x=y^2)

Result may not be accurate

Programming using SCILAB Page 11

if x is not symmetric

Remark: All the elementary mathematical functions listed above are discussed as real

functions or real vector valued functions. Those mathematical functions which are

extended from real to complex functions (for example, trigonometric, exponential and

logarithmic functions) have same function names. This means that, if their input

argument is a complex number, the same function returns the output as a complex

number, behaving as a complex function. This feature of Scilab is phrased as

“elementary functions in Scilab are overloaded for complex numbers”. The following

Scilab session illustrates this feature.

-->y = sin(%pi/2)

 y =

 1.

 -->w = sin(2 + 3 * %i)

 w =

 9.1544991 - 4.168907i

Some other functions provided in Scilab which help managing complex numbers are

provided below.

Functions to manage complex numbers

Another salient feature of Scilab is that it understands the difference between

real numbers and purely real complex numbers.

Function Name Description

real gives the real part of complex number

imag gives the imaginary part of complex number

imult performs multiplication of number in input with i

isreal returns true if the variable has no complex entry

Following Scilab session demonstrates the use of these functions.

--> z = 2 + 3 * %i

Programming using SCILAB Page 12

 z =

 2. + 3.i

 -->x = real(z)

 x =

 2.

 -->y = imag(z)

 y =

 3.

-->z1 = imult(z)

 z1 =

 - 3. + 2.i

-->isreal(z)

 ans =

 F

-->isreal(2)

 ans =

 T

Remark: Scilab distinguishes between real and purely real complex numbers. This

feature can be verified by appropriately using the isreal function as demonstrated

below.

-->z2 = 2 + 0 * %i

 z2 =

 2.

-->isreal(z2)

 ans =

 F

Programming using SCILAB Page 13

-->isreal(2)

 ans =

 T

Booleans

Some comparison operators and logical connective operators available in Scilab

are described given below.

Comparison operators

Operator Use Description

== a==b returns truth value true if expression a is equal to b; otherwise

false

~= or <> a~=b

or

a<>b

returns truth value true if expression a is not equal to b;

otherwise false

< a<b returns truth value true if a real expression a is less than b;

otherwise false

> a>b returns truth value true if a real expression a is greater than b;

otherwise false

<= a<=b returns truth value true if a real expression a is less than or

equal to b; otherwise false

>= a>=b returns truth value true if a expression a is greater than or

equal to b; otherwise false

Logical connective operators

Operator Use Description

& A&B logical AND operator: returns truth value true only for the case

when both the logical expressions A and B have truth value true

| A|B logical OR operator: returns truth value true for when at least

one of the logical expressions A and B have truth value true

~ ~A logical NOT operator: returns truth value true if the logical

expressions A has truth value false and vice-versa

The use of all the operators is demonstrated through a Scilab session in Console, as

given below.

Programming using SCILAB Page 14

-->x = 1;

-->y = 2;

-->z = x + y;

z =

 3.

-->z==3

ans =

 T

-->x<y

 ans =

 T

-->x<=y

 ans =

 T

-->x>z

 ans =

 F

-->x>=1

 ans =

 T

-->x~=1

 ans =

 F

-->x<>1

 ans =

 F

-->z = (x==1) & (y==2)

Programming using SCILAB Page 15

 z =

 T

-->z1 = (x==1) | (y==3)

 z1 =

 T

-->z2 = ~z1

 z2 =

 F

Strings

String is an array of characters. To represent a string in Scilab, a set of characters

is enclosed within double quotes (for example, “A string in Scilab”).

 Strings can be stored in variables by using assignment operator, just as other values

of real or complex numbers can be stored.

 Concatenation (i.e., joining) of strings is done by using the concatenation operator +.

The following Scilab session demonstrates the concatenation of two strings.

-->x = "String "

 x =

String

-->y = "Concatenation"

 y =

Concatenation

-->z = x + y

 z =

String Concatenation

 The Scilab in-built function string gives the output as a string of numeric

characters corresponding to any number supplied as input. Its use is demonstrated

through a Scilab session in console.

Programming using SCILAB Page 16

-->m = 2;

-->n = 4;

-->string(m) + " divides " + string(n)

ans =

2 divides 4

Exercise 1

In the console:

1. Use assignment operator for creating and setting (assigning) variables to float value,

string, Boolean values,

2. Use of comment and continuation line,

3. Use of inbuilt Mathematical function and operators,

4. Use of pre-defined Mathematical variables,

5. Use of Booleans and comparison operators,

6. Use of complex numbers, and operations on them,

7. Use of strings and concatenation operator, and use of comparison operator ‘==’ for

comparison of two strings for checking their equality.

8. Swap the values assigned to two variables without using third variable.

Programming using SCILAB Page 17

Chapter 2: Matrices

Scilab works with essentially only one kind of object a rectangular, numerical

array of numbers, possibly complex, called a matrix. In some situations, 1 × 1 matrices

are interpreted as scalars and matrices with only one row or one column are

interpreted as vectors. Matrices can be introduced into Scilab in several different ways:

 Entered by an explicit list of elements.

 Generated by built-in statements and functions.

 Created in Script files.

 Loaded from external data files.

Scilab contains no size or type declarations for variables. Scilab allocates storage

automatically, up to available memory.

2.1 Vectors

Vectors come in two formats - row vectors and column vectors. In either case

they are lists of numbers separated by either commas or spaces.

 The number of entries is known as the "length" of the vector and the entries

are called elements or components of the vector.

 The entries must be enclosed by square brackets "[" and "]". Entries of a row

vector are separated by comma (,) or space. Whereas entries of a column vector

are separated by semicolon (;).

 A row vector can be transposed to a column vector and vice-versa using the

transpose operator (.‟). Whereas, transpose conjugate operation be performed

by using (‟). Thus, both of these operators give the output for real vectors.

 Binary operations applicable on vectors are addition (+), subtraction (-), scalar

multiplication (*), and dot product (.*).

 A row (column) vector can be joined with another row (column) vector. The

same is demonstrated below.

Following Scilab session illustrates features of Scilab vectors discussed above.

--> v = [1, 3, sqrt(5)]

v =

 1. 3. 2.236068

--> length(v)

ans =

Programming using SCILAB Page 18

 3.

--> v2 = 3*v

v2 =

 3. 9. 6.7082039

-->v + v2

 ans =

 4. 12. 8.9442719

-->v - v2

 ans =

 - 2. - 6. - 4.472136

-->v3 = v.'

 v3 =

 1.

 3.

 2.236068

-->v4 = v2.'

 v4 =

 3.

 9.

 6.7082039

-->v5 = [v, v2]

 v5 =

 1. 3. 2.236068 3. 9. 6.7082039

 -->v6 = [v3; v4]

 v6 =

 1.

 3.

 2.236068

Programming using SCILAB Page 19

 3.

 9.

 6.7082039

 -->v6 = [v3, v4]

 v6 =

 1. 3.

 3. 9.

 2.236068 6.7082039

Remark: 1. It is to be noted from the above demonstration of Scilab session that the

dimensions of vectors must agree for joining the vectors.

2. In all vector arithmetic with vectors of equal length, the operations are

carried out element-wise.

Particular entries of a vector can be accessed and changed as demonstrated below.

-->v

 v =

 1. 3. 2.236068

-->v(1)

 ans =

 1.

-->v(2)

 ans =

 3.

-->v(3)

 ans =

 2.236068

-->v(2) = 5

 v =

Programming using SCILAB Page 20

 1. 5. 2.236068

2.1.1 Operations on Vectors

In Scilab, operations are available for addition, subtraction, vector product,

element-wise product, element-wise division, and element-wise power.

Addition (+) and subtraction (-) of vectors

The addition (+) and subtraction (-) operations in Scilab work element-wise by

giving output as addition and subtraction of corresponding elements. For example:

-->a = [5 7 9; 1 -3 -7], b = [-1 2 5; 9 0 5]

 a =

 5. 7. 9.

 1. - 3. - 7.

 b =

 - 1. 2. 5.

 9. 0. 5.

-->a+b

 ans =

 4. 9. 14.

 10. - 3. - 2.

-->a-b

 ans =

 6. 5. 4.

 - 8. - 3. - 12.

Vector product (*)

We shall describe two ways in which a meaning may be attributed to the product

of two vectors. In both cases, the vectors concerned must have the same length. The first

product is the standard scalar product. Suppose that u and v are two vectors of length

n, 𝑢 being a row vector and 𝑣 a column vector:

Programming using SCILAB Page 21

𝑢 = ,𝑢1, 𝑢2 , , 𝑢𝑛 - , 𝑣 =

𝑣1

𝑣2

.

.
𝑣𝑛

The scalar product is defined by multiplying the corresponding elements together and

adding the results to give a single number (scalar).

𝑢 ∗ 𝑣 = 𝑢𝑖𝑣𝑖

𝑛

𝑖=1

We can perform this product in Scilab by

--> u = [10, -11, 12], v = [20; -21; -22]

u =

 10. -11. 12.

v =

 20.

 -21.

 -22.

--> prod=u*v // row times column vector

prod =

 167

Suppose we also define a row vector w and a column vector z by

--> w=[2,1,3], z=[7;6;5]

w =

 2. 1. 3.

z =

 7.

 6.

 5.

and we wish to form the scalar products of u with w and v with z.

-->u*w

Programming using SCILAB Page 22

 !--error 10

Inconsistent multiplication.

An error results because w is not a column vector. Recall from earlier that

transposing (with ') turns column vectors into row vectors and vice versa. So, to form

the scalar product of two row vectors or two column vectors,

--> u*w.' // u and w are row vectors

ans =

45

--> u*u.' // u is a row vector

ans =

365

--> v.'*z // v and z are column vectors

ans =

-96

We shall refer to the Euclidean length of a vector as the norm of a vector; it is denoted

by the symbol . and defined by

 𝑢 = 𝑢𝑖
2

𝑛

𝑖=1

where 𝑛 is its dimension. This can be computed in Scilab in one of two ways examplified

below:

--> [sqrt(u*u.'),norm(u)]

ans =

 19.104973 19.104973

where norm is a built in Scilab function that accepts a vector 𝑢 as input and delivers a

scalar 𝑢 as the output.

Element-wise product or dot product (.*)

The second way of forming the product of two vectors of the same length is

known as the Hadamard product. It is not often used in Mathematics but is an invaluable

Scilab feature. It involves vectors of the same type. If u and v are two vectors of the same

type (both row vectors or both column vectors), the mathematical definition of this

product, which we shall call the dot product, is the vector having the components

𝑢. 𝑣 = ,𝑢1𝑣1 , 𝑢2𝑣2 , , 𝑢𝑛𝑣1-

Programming using SCILAB Page 23

The result is a vector of the same length and type as u and v. Thus, we simply multiply

the corresponding elements of two vectors. In Scilab, the product is computed with the

operator .* and, using the vectors w, z defined earlier

--> w.*w

ans =

 4. 1. 9.

>> w.*z'

ans =

 14. 6. 15.

Element-wise division of vectors: right-division (./) and left-division (.\)

There is no mathematical definition for the division of one vector by another.

However, in Scilab, operators “./” and “.\” is defined to give element-wise division. It

is therefore only defined for vectors of the same size and type. The right-division

opertor “./” divides elements of pre-factor with corresponding elements of post-factor.

Whereas, left-division opertor “.\” divides elements of post-factor with corresponding

elements of pre-factor. That is, for vectors a and b of same shape and length, a./b gives

the vector with entries a(i)/b(i) for each index i and a.\b gives the vector with

entries b(i)/a(i) for each index i.

--> a = 1:5, b=6:10, a./b, a.\b

a =

 1. 2. 3. 4. 5.

b =

 6. 7. 8. 9. 10.

ans =

 0.1666667 0.2857143 0.375 0.4444444 0.5

ans =

 6. 3.5 2.6666667 2.25 2.

--> a./a

ans =

 1. 1. 1. 1. 1.

--> c = -2:2, a./b

c =

 -2. -1. 0. 1. 2.

ans =

 0.1666667 0.2857143 0.375 0.4444444 0.5

Programming using SCILAB Page 24

Remark: The importance of these operations will be highlighted during their discussion

on two dimensional matrices as same operations are applicable there also.

Element-wise power of vectors (.^)

To square each of the elements of a vector we could, for example, do u.*u.

However, a neater way is to use the .^ operator is demonstrated below.

--> u

u =

 10. -11. 12.

--> u.^2

ans =

 100. 121. 144.

--> u.*u

ans =

 100. 121. 144.

--> u.*w.^(-2)

ans =

 2.5 -11. 1. 3333333

Observe that powers (.^ in this case) are done first, before any other arithmetic

operation.

2.1.2 The Colon Operator

Colon operator in Scilab enables to create a row vector having integers entries in

an arithmetic progression.

1. The most basic syntax of the colon operator is:

v = i : j

where i is the starting index and j is the ending index, with i ≤ j. This creates a row

vector

v = (i, i+1, . . . , j).

The following Scilab session demonstrates the use of colon operator

-->3:7

ans =

 3. 4. 5. 6. 7.

2. The complete syntax allows configuring the increment used when generating the

index values, i.e., the step. The complete syntax for the colon operator is

v = i : s : j

Programming using SCILAB Page 25

where i is the starting index, j is the ending index and s is the step. This command

creates the vector v = (i, i+s, i+2s, . . . , i+ns) where n is the

greatest integer such that i + ns ≤ j, if s ≥ 0 and i ≤ j.

Observation:

(a) If s divides j - i, then the last index in the vector of index values is j, because

in that case i + ns = j.

(b) In other cases, we have i + ns < j.

While, in most situations the step s is positive, it can be negative also. Following

Scilab session demonstrates all the cases discussed here.

-->v = 4 : 2 : 10

 v =

 4. 6. 8. 10.

 -->v = 3 : 2 : 10

 v =

 3. 5. 7. 9.

 -->v = 10 : -2 : 4

 v =

 10. 8. 6. 4.

 -->v = 10 : -2 : 3

 v =

 10. 8. 6. 4.

2.1.3 Creating linearly spaced vector: linspace function

Scilab has an in-built function linspace for creating a linearly spaced vector

with any specified values between two real or complex numbers. The syntax for calling

this function is

[v] = linspace(x1, x2, n) .

Here, x1 and x2 are real or complex scalars or column vectors, and

n is a natural number whose value should be greater than or equal to 2.

Programming using SCILAB Page 26

For example:

-->eye(2, 2)

-->linspace(1,2,5)

 ans =

 1. 1.25 1.5 1.75 2.

-->linspace(1+%i,2+2*%i,5)

 ans =

 1. + i 1.25 + 1.25i 1.5 + 1.5i 1.75 + 1.75i 2. + 2.i

-->linspace([1:4]',[5:8]',5)

 ans =

 1. 2. 3. 4. 5.

 2. 3. 4. 5. 6.

 3. 4. 5. 6. 7.

 4. 5. 6. 7. 8.

2.2 Two-dimensional matrices

2.2.1 Creating Matrices

There is a simple and efficient syntax to create a matrix with given values. The

following is the list of symbols used to define a matrix:

 square brackets "[" and "]"mark the beginning and the end of the matrix,

 commas "," or spaces separate the values on different columns,

 semicolons ";" separate the values of different rows.

The following syntax can be used to define a matrix, where blank spaces are

optional (but make the line easier to read) and "..." are designing intermediate values:

A = [a11, a12, ... , a1n; a21, a22, ... , a2n; ...; an1, an2,

... , ann]

For example, either of the statements

--> A = [1 2 3; 4 5 6; 7 8 9]

Programming using SCILAB Page 27

and

--> A = [1 2 3

--> 4 5 6

--> 7 8 9]

create the same matrix and assign it to the variable A. Scilab responds to this

command by storing in the following matrix against the variable name A and displaying

the same in Console.

A =

 1 2 3

 4 5 6

 7 8 9

Scilab always prints out the variable in the executed line (which can be very

awkward and time consuming for large arrays) unless you end the line with a semicolan

(;). It is good practice to use the semicolan at the end of the line. You can always ask

Scilab to print the matrix later also by calling the variable name, as shown below.

--> A

A =

 1 2 3

 4 5 6

 7 8 9

2.2.2 Some Special Matrices through in-built functions

The built-in functions rand, eye, and ones, for example, provide an easy way to

create matrices with which to experiment.

Identity matrix

The command eye(n, n) creates the identity matrix of order n × n. For

example:

-->eye(2, 2)

 ans =

 1. 0.

 0. 1.

Remark: For the case of 𝑚 ≠ 𝑛, the Scilab command eye(m, n)creates a rectangular

matrix with m rows and n columns with the identity matrix of order = min*𝑚, 𝑛+ and

additional rows or columns as zeros. For example:

Programming using SCILAB Page 28

-->eye(2, 3)

 ans =

 1. 0. 0.

 0. 1. 0.

-->eye(3, 2)

 ans =

 1. 0.

 0. 1.

 0. 0.

Matrix with all entries one

The command ones(m, n) creates the identity matrix of order m × n. For

example:

-->ones(2, 3)

ans =

 1. 1. 1.

 1. 1. 1.

Matrix with all entries zero

The command zeros(m, n) creates the identity matrix of order m × n. For

example:

-->zeros(2, 3)

ans =

 1. 1. 1.

 1. 1. 1.

Random matrix

The command rand(m, n) will create a matrix of order m × n with randomly

generated entries distributed uniformly between 0 and 1

--> rand(5, 5)

ans =

Programming using SCILAB Page 29

 0.8147 0.0975 0.1576 0.1419 0.6557

 0.9058 0.2785 0.9706 0.4218 0.0357

 0.1270 0.5469 0.9572 0.9157 0.8491

 0.9134 0.9575 0.4854 0.7922 0.9340

 0.6324 0.9649 0.8003 0.9595 0.6787

while rand(m,n) will create an m × n array.

--> rand(3,4)

ans =

 0.7577 0.6555 0.0318 0.0971

 0.7431 0.1712 0.2769 0.8235

 0.3922 0.7060 0.0462 0.6948

2.2.3 Operations on matrices

Scilab provides operations on matrices of same size viz. addition (+), subtraction

(-), element-wise multiplication or dot product (.*), element-wise right-division (./), and

element-wise right-division (.\). Also the multiplication on any two matrices of

comparable order is performed in Scilab using the multiplication operator (*). Herein,

Scilab considers row and column vectors as row and column matrices. All these matrix

operations are discussed below. Two more operators namely, right-division (/) and left-

division (\) are also available in Scilab and are discussed later in this section.

Addition (+) and subtraction (-) of matrices

The addition and subtraction work element-wise, just as for vectors:

corresponding elements are added together.

-->a = [5 7 9; 1 -3 -7], b=[-1 2 5; 9 0 5]

 a =

 5. 7. 9.

 1. - 3. - 7.

 b =

 - 1. 2. 5.

 9. 0. 5.

-->a+b

 ans =

Programming using SCILAB Page 30

 4. 9. 14.

 10. - 3. - 2.

-->a-b

 ans =

 6. 5. 4.

 - 8. - 3. - 12.

Dot product of matrices (.*)

The dot product works as for vectors: corresponding elements are multiplied

together - so the matrices involved must have the same size.

--> a = [5 7 9; 1 -3 -7], b=[-1 2 5; 9 0 5]

a =

 5 7 9

 1 -3 -7

b =

 -1 2 5

 9 0 5

--> a.*b

ans =

 -5 14 45

 9 0 -35

--> c=[0 1;3 -2;4 2]

c =

 0 1

 3 -2

 4 2

-->a.*c

 !--error 9999

Inconsistent element-wise operation

-->a.*c'

ans =

 0 21 36

 1 6 -14

Product of matrices

To form the product of an m × n matrix A and a n × p matrix B, written as AB, we

visualize the first matrix (A) as being composed of m row vectors of length n stacked on

Programming using SCILAB Page 31

top of each other while the second (B) is visualized as being made up of p column

vectors of length n. The entry in the ith row and jth column of the product is then the

scalar-product of the ith row of A with the jth column of B. The product is an m × p

matrix.

Check that you understand what is meant by this definition by taking through the

following examples.

--> a=[5 7 9;1 -3 -7],b=[0 1;3 -2;4 2]

a =

 5 7 9

 1 -3 -7

b =

 0 1

 3 -2

 4 2

--> c=a*b

c =

 57 9

 -37 -7

--> d=b*a

d =

 1 -3 -7

 13 27 41

 22 22 22

--> e=b'*a'

e =

 57 -37

 9 -7

We see that e = c’ suggesting that (a * b)' = b' * a' Why is b * a a 3 × 3 matrix while a * b is

2 × 2?

Remark: (Matrix-vector are vector-matrix product) As vectors are row or column

matrices, therefore the product of a matrix with a vector with appropriate order is

covered in this definition of the product operations of matrices in Scilab.

Left-division (\) of matrices

If A is a square matrix and A and B are matrices of comparable order for

multiplication, then the left-division operator (\) works for A\B to give the result

inv(A)*B. For example:

Programming using SCILAB Page 32

-->A = [1, 2; 3, 4]

 A =

 1. 2.

 3. 4.

-->B = [2, 5, 4; 5, 6, 7]

 B =

 2. 5. 4.

 5. 6. 7.

-->A\B

 ans =

 1. - 4. - 1.

 0.5 4.5 2.5

 -->inv(A)*B

 ans =

 1. - 4. - 1.

 0.5 4.5 2.5

This operator can be used to solve for 𝑥 the matrix equation2

 𝐴𝑥 = 𝑏.

For example: For the system of equations

 𝑥1 + 2𝑥2 = 3

3𝑥1 + 4𝑥2 = 7

the matrix form is 𝐴𝑥 = 𝑏, where 𝐴 =
1 2
3 4

 , 𝑥 =
𝑥1

𝑥2
 , and 𝑏 =

3
7
 .

As determinant of 𝐴 is -2, which is non-zero, therefore the matrix 𝐴 is invertible. Hence,

the solution of this system of equations can be obtained as 𝑥 = 𝐴−1𝑏. This is can be

solved through the following Scilab session.

2 Solving the system of equations will be discussed again in detail in a later chapter and there this
operator would be utilized as a part of the complete discussion.

Programming using SCILAB Page 33

-->A

 A =

 1. 2.

 3. 4.

-->b = [3; 7]

 b =

 3.

 7.

-->x = A\b

 x =

 1.

 1.

Alternatively, the same can be achieved by using the in-built Scilab function inv for

inverse of a matrix.

-->x = inv(A)*b

 x =

 1.

 1.

Right-division (/) of matrices

If B is a square matrix and A and B are matrices of comparable order for

multiplication, then the right-division operator (/) works for A/B to give the result

A*inv(B). For example:

-->C = [2, 3; 4, 5; 6, 7]

 C =

 2. 3.

 4. 5.

 6. 7.

-->D = [1, 2; 3, 4]

Programming using SCILAB Page 34

 D =

 1. 2.

 3. 4.

-->C/D

 ans =

 0.5 0.5

 - 0.5 1.5

 - 1.5 2.5

-->C*inv(D)

 ans =

 0.5 0.5

 - 0.5 1.5

 - 1.5 2.5

Transpose of a matrix

Just like on vectors, the transpose of a matrix is obtained by the command (.‟)

and the transpose conjugate of a matrix is obtained by the command (‟). For example:

-->A

 A =

 1. 2. 3.

 4. 5. 6.

-->A'

 ans =

 1. 4.

 2. 5.

 3. 6.

-->A.'

 ans =

 1. 4.

 2. 5.

Programming using SCILAB Page 35

 3. 6.

-->B = [1 + 2 * %i, 2 + 3 * %i; %i, -%i]

 B =

 1. + 2.i 2. + 3.i

 i - i

-->B.'

 ans =

 1. + 2.i i

 2. + 3.i - i

-->B'

 ans =

 1. - 2.i - i

 2. - 3.i i

Query Matrices

We can get the size (or order or dimensions) of a matrix with the command

size. The size function returns the two output arguments nr and nc, which are the

number of rows and the number of columns.

-->A = ones(2 ,3)

A =

 1. 1. 1.

 1. 1. 1.

-->[nr ,nc]= size (A)

nc =

 3.

 nr =

 2.

The size function has also the following syntax

nr = size(A ,sel)

which allows to get only the number of rows or the number of columns and where sel

can have the following values

Programming using SCILAB Page 36

 sel=1 or sel="r", returns the number of rows,

 sel=2 or sel="c", returns the number of columns.

 sel="*", returns the total number of elements, that is, the number of columns

times the number of rows.

In the following session, we use the size function in order to compute the total number

of elements of a matrix.

-->A = ones(2 ,3)

 A =

 1. 1. 1.

 1. 1. 1.

-->size (A,"*")

 ans =

 6.

Accessing the elements of a matrix

There are multiple ways of accessing matrices, completely or in part.

Method 1: Calling the whole matrix

For a matrix which is already defined and assigned to the variable A, the whole matrix

can be assessed by calling the same by its variable name. For exampe,

-->A = ones (2 ,3);

-->A

 A =

 1. 1. 1.

 1. 1. 1.

Method 2: Calling an element of a matrix

For a matrix which is already defined and assigned to the variable A, the element in row

number i and column number j of the matrix A can be assessed by calling it through

the syntax A(i, j). For exampe,

-->B = [1, 2, 3; 4, 5, 6]

 B =

 1. 2. 3.

 4. 5. 6.

-->B(2, 3)

Programming using SCILAB Page 37

 ans =

 6.

-->B(1, 3)

 ans =

 3.

-->B(1, 2)

 ans =

 2.

Method 3: Accessing a submatrix of a matrix

For a matrix which is already defined and assigned to the variable A, its submatrix can

be accessed by specifying the indices for row numbers and column numbers as row-

vectors. For the vector of row indices is defined as u and vetcor for column indices is v,

the submatrix of matrix A can be assessed by calling it through the syntax A(u, v). For

exampe, for a matrix B (defined below), the submatrix of with entries of 2nd and 4th row

which lie in 1st and 4th coulmn can be accessed by the commands demonstrated in the

following Scilab session.

-->B = [1, 2, 3, 4, 5; 6, 7, 8, 9, 10; 11, 12, 13, 14, 15; ..

16, 17, 18, 19, 20]

B =

 1. 2. 3. 4. 5.

 6. 7. 8. 9. 10.

 11. 12. 13. 14. 15.

 16. 17. 18. 19. 20.

-->u = [2, 4], v = [1, 4]

 u =

 2. 4.

 v =

 1. 4.

-->B(u, v)

 ans =

 6. 9.

 16. 19.

Programming using SCILAB Page 38

Remarks:

1. Colon operator can also be used for defining the above discussed vector of indices.

For example, the submatrix of the above mentioned matrix B with entries from the

first three rows which lie in 1st, 3rd and 5th column can be accessed by following the

following Scilab command.

-->B(1:3, 1:2:5)

 ans =

 1. 3. 5.

 6. 8. 10.

 11. 13. 15.

2. Complete rows or columns can be accessed by appropriately using the colon

operator in place of index vector. Particularly,

a. The complete ith row of a matrix A can be accessed by the command A(i, :).

For example, for the matrix B mentioned above, complete 3rd row can be

accessed through the command

-->B(3, :)

 ans =

 11. 12. 13. 14. 15.

b. The complete jth column of matrix A can be accessed by the command A(:, j).

For example, for the matrix B mentioned above, complete 2nd column can be

accessed through the command

-->B(:, 2)

 ans =

 2.

 7.

 12.

 17.

3. The order in which indices are placed in the index vector u or v for accessing rows

and columns, corresponding rows of the submatrix are arranged in the output

obtained through the command A(u, v). For example, for the matrix B mentioned

above, observe the output obtained through the following command

-->u = [2, 1];

-->B(u, :)

 ans =

 6. 7. 8. 9. 10.

 1. 2. 3. 4. 5.

The command B(u, :) gives the complete 1st and 2nd rows but in reverse order, as

the vector u depicts the row indices 2 first and 1 second.

Programming using SCILAB Page 39

The dollor operator ($) for counting indices to assess matrices

The dollor operator ($) enables to refer to the last row index or last column

index of a matrix without manually finding those. For example, if A is a matrix of order

𝑚 × 𝑛, then for referring to the elements of matrix A while counting the indices in

decending order starting from the last one, can be done through the following

commands.

Command Description

A(i, $) the element of matrix A in row i and the last column (i.e., column n)

A($, j) the element of matrix A in the last row (i.e., row m) and column i

A($-i, j) the element of matrix A in the row (m - i) and the column j

A(i, $-j) the element of matrix A in the row i and the column (n - j)

A($-i, $-j) the element of matrix A in the row (m - i) and the column (n - j)

These commands are illustrated below through the following Scilab session.

-->A = [1, 2, 3; 4, 5, 6]

 A =

 1. 2. 3.

 4. 5. 6.

-->A(2, $)

 ans =

 6.

-->A($, 1)

 ans =

 4.

-->A($, $)

 ans =

 6.

-->A($-1, $-2)

 ans =

 1.

Programming using SCILAB Page 40

2.2.4 Functions on matrices

There are some useful in-built functions available in Scilab which enable

obtaining some important informations about matrices. Some of these are detailed in

the table given below.3

Function Syntax Description

det det(A) gives the determinant of a matrix A

inv inv(A) gives the inverse of a matrix A

linsolve x=linsolve(A, b) solves the system of linear equations Ax+b=0

trace a=trace(A) gives the trace (sum of diagonal entries) of a

matrix A

spec [R,diagevals]

=spec(B)

or

evals = spec(B)

R = square matrix of eigenvectors (specifically,

the right-eigenvectors)

diagevals = gives a diagonal matrix with

entries the eigenvalues of matrix A

evals = column vector comprising of

eigenvalues of matrix A

First four functions on matrices introduced in the table given above are self

explanatory, whereas the spec function requires little elaboration through practical

demonstrations through a Scilab session as given below. For this demonstration we

have take simple most examples of matrices whose eigenvalues and eigenvectors can be

identified at the first look due to known properties of linear algebra.

-->A = eye(2, 2)

 A =

 1. 0.

 0. 1.

3 Here only some of the in-built functions have been listed. Interested readers may refer to the help
document of Scilab for exploring more in-built functions available in Scilab.

Programming using SCILAB Page 41

-->[R,diagevals] =spec(A)

 diagevals =

 1. 0.

 0. 1.

 R =

 1. 0.

 0. 1.

// If we call the spec function without specifying any output

// arguments or by specifying only one output argument, then

// only eigenvalues are returned by the call of function in

// the form of a column vector.

-->spec(A)

 ans =

 1.

 1.

-->evals = spec(A)

 evals =

 1.

 1.

-->B = [2, 0; 0, 3]

 B =

 2. 0.

 0. 3.

-->spec(B)

 ans =

 2.

 3.

Programming using SCILAB Page 42

-->[R,diagevals] =spec(B)

 diagevals =

 2. 0.

 0. 3.

 R =

 1. 0.

 0. 1.

-->B = [2, 0, 0; 0, 2, 0; 0, 0, 3]

 B =

 2. 0. 0.

 0. 2. 0.

 0. 0. 3.

-->[R,diagevals] =spec(B)

 diagevals =

 2. 0. 0.

 0. 2. 0.

 0. 0. 3.

 R =

 1. 0. 0.

 0. 1. 0.

 0. 0. 1.

The discussion on matrices is vast and it is impossible to list its all features and

ways to deal them in Scilab. The demonstrations made in this chapter are sufficient to

explain the fundamentals for all the basic dealings of matrices. This makes it

appropriate to conclude this chapter here to the scope of this book. For advanced topics,

readers are suggested to refer to the help document of Scilab.

Programming using SCILAB Page 43

Exercise 2

1. Perform following tasks:

(a) Create an identity matrix of a pre-specified order.

(b) Create a matrix of a pre-specified order with all entries ones.

(c) Create a matrix of a pre-specified order with all entries zeros.

(d) Use the function ‘linspace’ to create a vector with initial value 0, final value 10 and

number of values in the vector as 5.

(e) Use the function ‘rand’ and ‘grand’ for creating matrices.

(f) Use the function ‘testmatrix’ for defining a matrix.

(g) Create the following matrix in Scilab.

12 14 11 2
−2 3 16 19 + 2i
21 3 6 8

2. Use the function size with its various calling sequences, to obtain the shape of the

matrix.

3. Write a code to (1) create a matrix with 3 rows and 4 columns and (2) add the entries of

first column of the matrix.

4. Use colon operator to create

(a) a vector of integers with starting value -5 and ending value 3.

(b) a vector with all odd integers with starting value 5 and ending value -5.

5. Use the dollar operator to access the entry in 3rd row and 4th column of a matrix with

order 4 x 5.

6. Use lower level operations for addition, subtraction, multiplication, right division, left

division, power, and transpose-conjugate of matrices.

7. Use element-wise operations for element-wise addition, subtraction, multiplication,

right division, left division, power of matrices. Obtain transpose (but not conjugate) of a

matrix.

Programming using SCILAB Page 44

Chapter 3: Scilab Programming

Scilab is a software which enables the users to work more freely for utilizing its

available computing functionalities by developing their own programs for any method

or algorithm. Scilab has its own programming syntax for various statements which are

required for any programming language. Among foremost fundamental statements of

such a programming language are branching statements and looping statements. In this

chapter the syntax and use these statements are discussed in the context of Scilab as a

programming language.

3.1 Branching statements

Branching statements are used to enable a program for handling the decision

making situations while they are run with practical inputs. These statements are

categorized depending upon the type of decisions to be taken. Such basic statements are

described below one by one.

The if statement

This statement allows executing desirable sequence of actions depending on if a

certain logical condition gets satisfied. The syntax for this statement is

if (logical test) then

Scilab Command 1

Scilab Command 2

...

end

The syntax of “if statement” in Scilab as given above, first evaluates the

condition given through the expression “logical test”. If the output of this

evaluation comes out with Boolean value “True”, then the Scilab commands written

between the keywords then and end are executed sequentially. Whereas, for the case,

when the output of this evaluation is comes out with Boolean value “False”, then

nothing is executed.

Let us understand this concept through a small program coded in Scilab editor

“SciNotes”.

Programming using SCILAB Page 45

Example 3.1: The following program having an “if statement” tests whether a given

real number is equal to zero, and then displays an appropriate message only for the case

when output of the logical test is “True” (i.e., when the number is equal to zero).

clear

r = input("Enter a real number ")

if (r == 0) then

 disp("The given number is equal to zero.")

end

The output of the above program upon execution is demonstrated below for two

different inputs.

Output:

-->exec('D:\SCILAB\Ch3_1_Ex1_if_Statement.sce', -1)

Enter a real number 0

 The given number is equal to zero.

-->exec('D:\SCILAB\Ch3_1_Ex1_if_Statement.sce', -1)

Enter a real number 2

-->

It is to be noted here that in case of first execution of the program, as the input is

number zero, therefore a message is displayed due to the logical test (r == 0) having

truth value “True”. Whereas, when in second execution of the program a non-zero

number is input, nothing appears as a message, because there is no command to be

executed if the logical test gives truth value “False”.

Let us consider a situation when it is required to execute certain sequence of

commands for one outcome of the logical test whereas another sequence of commands

to be executed for another outcome. Then it is appropriate to use another branching

statement, as detailed below.

The if-else statement

This statement allows executing exactly one out of two desirable sequences of

actions depending on if a certain logical condition gets satisfied or not. The syntax for

this statement is

if (logical test) then

Scilab Command A1

Scilab Command A2

...

else

Programming using SCILAB Page 46

Scilab Command B1

Scilab Command B2

...

end

The syntax of “if-else statement” in Scilab as given above, first evaluates the

condition given through the expression “logical test”. If the output of this

evaluation comes out with Boolean value “True”, then the Scilab commands Scilab

Command A1... written between the keywords then and else are executed

sequentially. Whereas, for the case, when the output of this evaluation is comes out with

Boolean value “False”, then the Scilab commands Scilab Command B1... written

between the keywords else and end are executed sequentially.

Let us understand this concept through another small program coded in Scilab

editor “SciNotes”.

Example 3.2: The following program having an “if-else statement” tests whether a

given real number is equal to zero. It then displays a message for the case when output

of the logical test is “True” (i.e., when the number is equal to zero), whereas, in case of

output of the logical test “False”, displays another message.

clear

r = input("Enter a real number ")

if (r == 0) then

 disp("The given number is equal to zero.")

else

 disp("The given number is not equal to zero.")

end

The output of the above program upon execution is demonstrated below for two

different inputs.

Output:

-->exec('D:\SCILAB\Ch3_1_Ex2_if_else_Statement.sce', -1)

Enter a real number 0.001

 The given number is not equal to zero.

-->exec('D:\SCILAB\Ch3_1_Ex2_if_else_Statement.sce', -1)

Enter a real number 0

 The given number is equal to zero.

-->

Programming using SCILAB Page 47

It is to be noted here that different messages are displayed in both the executions

of the program, depending upon the truth value of the logical test (r == 0) as “True”

or “False”.

A branching statement with multiple logical tests can also be used sequentially

for execution of different sequences of commands for different outcomes of logical tests.

Such a statement is explained below.

The if-elseif-else statement

This statement allows multi-stage testing for execution of exactly one sequence

of actions, among many, depending on which combination of logical conditions gets

satisfied or dissatisfied. A basic syntax for this statement is

if (logical test 1) then

Scilab Command A1

Scilab Command A2

...

elseif (logical test 2) then

Scilab Command B1

Scilab Command B2

...

else

Scilab Command C1

Scilab Command C2

...

end

The syntax of “if-elseif-else statement” in Scilab as given above, first

evaluates the condition given through the expression “logical test 1”. If the

output of this evaluation comes out with Boolean value “True”, then the Scilab

commands Scilab Command A1... written between the keywords then and

elseif are executed sequentially. Whereas, for the case, when the output of this first

evaluation is comes out with Boolean value “False”, then further the expression

“logical test 2” is evaluated. If the output of this second evaluation comes out

with Boolean value “True”, then the Scilab commands Scilab Command B1...

written between the keywords elseif and else are executed sequentially. Whereas,

for the case, when the output of this second evaluation is comes out with Boolean value

“False”, then the Scilab commands Scilab Command C1... written between the

keywords else and end are executed sequentially.

Let us understand this concept through a small program coded in Scilab editor

“SciNotes”.

Programming using SCILAB Page 48

Example 3.3: The following program having an “if-elseif-else statement” tests

whether a given real number is zero, positive, or negative.

clear

r = input("Enter a real number ")

if (r == 0) then

 disp("The given number is equal to zero.")

elseif (r > 0) then

 disp("The given number is positive.")

else

 disp("The given number is negative.")

end

The output of the above program upon execution is demonstrated below for three

different inputs.

Output:

-->exec('D:\SCILAB\ Ch3_1_Ex3_if_elseif_else_Statement.sce', -

1)

Enter a real number 2

The given number is positive.

-->exec('D:\SCILAB\ Ch3_1_Ex3_if_elseif_else_Statement.sce', -

1)

Enter a real number -5

The given number is negative.

-->exec('D:\SCILAB\ Ch3_1_Ex3_if_elseif_else_Statement.sce', -

1)

Enter a real number 0

The given number is equal to zero.

-->

It is to be noted here that different messages are displayed in each of the

executions of the program, depending upon the truth value of the logical test (r == 0)

and further of the logical test (r > 0).

A branching statement with multiple logical tests can also be used sequentially

for execution of different sequences of commands for different outcomes of logical tests.

Such a statement is explained below.

The select statement

The select statement allows combining multi-stage testing several branches in a

clear and simple way.

Programming using SCILAB Page 49

select n

case i1 then

Scilab Command A1

Scilab Command A2

...

case i2 then

Scilab Command B1

Scilab Command B2

...

...

else

Scilab Command C1

Scilab Command C2

...

end

The syntax of “select statement” in Scilab as given above, takes the value n and

keeps matching with evaluations i1 , i2, … and implements the sequence of commands

exactly for that case whose evaluation matches the value n. Otherwise, the Scilab

commands written between the keywords else and end are executed sequentially.

Let us understand this concept through a small program coded in Scilab editor

“SciNotes”.

Example 3.4: The following program uses the “select statement” to check multiple

test condition and executes the Scilab commands accordingly.

clear

r = input("Enter the Roll Number ")

select r

case 1 then

 disp("Your Roll Number is 1.")

case 2 then

 disp("Your Roll Number is 2.")

else

 disp("Entered Roll Number is not in the list.")

end

The output of the above program upon execution is demonstrated below with two

different inputs.

Output:

-->exec('D:\SCILAB\Ch3_1_Ex4_select_Statement.sce', -1)

Enter the Roll Number 1

 Your Roll Number is 1.

Programming using SCILAB Page 50

-->exec('D:\SCILAB\Ch3_1_Ex3_ select_Statement.sce', -1)

Enter the Roll Number 5

 Entered Roll Number is not in the list.

-->

Exercise 3.1

1. Write a Scilab program to test whether a given number divides the other given number.

2. Write a Scilab program to test whether a given number is even or odd.

3. Write a Scilab program to test whether a given number is purely real number or a

complex number.

4. Write a Scilab program to test whether a given number is positive, negative, or zero.

5. Write a Scilab program to test whether a given number is positive, negative, or zero,

using select statement.

6. Write a Scilab program to solve a Quadratic Equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. The

input to the function are the values “𝑎, 𝑏, 𝑐” and the output of the function should

be in the variable names “𝑝, 𝑞” appropriately declared.

Programming using SCILAB Page 51

3.2 Looping statements

Looping statements are used to enable a program to repeat a sequence of

commands for a finite number of times. There are two types of such statements

available in Scilab. These are appropriately used depending on the situation that

whether the termination of the loop is known exactly through the number of repetitions

of commands or expressed in terms of some logical test condition.

3.2.1 The for statement

This statement allows executing desirable sequence of actions depending on if a

certain logical condition gets satisfied. For any variable name i and a vector of values v,

the syntax of the “for statement” is given below.

for i = v

Scilab Command 1

Scilab Command 2

...

end

Syntax of the “for statement” in Scilab as given above, indicates that the

sequence of Scilab commands will be executed repeatedly sequentially for each value of

the vector v assigned to the variable i. Let us learn this concept through some

examples.

Example 3.5: The following program computes the sum of first 5 natural numbers.

Sum = 0

for i=1:5

 Sum = Sum + i

end

disp("Final Sum")

disp(Sum)

In the above program coded in SciNotes, the variable i takes repeatedly and

sequentially values from the vector 1:5 and corresponding to each value taken by the

variable i, it is added to the variable Sum. Each time in the loop, the value of i is added

to the variable Sum, the variable Sum gets value of the partial sum to finally get the

desired value at the termination of the loop after variable i completing the commands

for value i=5. The output of this program is as following.

-->exec('D:\SCILAB\Ch3_2_Ex5_for_loop.sce', -1)

Final Sum

 15.

Programming using SCILAB Page 52

In the Example 3.4 discussed above, the basic colon operator is used. General

colon operator with specific step length can also be used in “for loop”, as demonstrated

in the next example.

Example 3.6: The following program demonstrates the sum of odd natural numbers

from 1 to 10.

Sum = 0

for i=1:2:10

 Sum = Sum + i

end

disp("Sum of odd natural numbers between 1 and 10")

disp(Sum)

In the above program coded in SciNotes, the variable i takes repeatedly and

sequentially values from the vector 1:2:10 (i.e., odd numbers between 1 and 10) and

corresponding to each value taken by the variable i, it is added to the variable Sum. The

output of this program in terms of the final value of variable Sum gives the desired

results, which is depicted as following.

-->exec('D:\SCILAB\Ch3_2_Ex6_for_loop.sce', -1)

Sum of odd natural numbers between 1 and 10

 25.

In the Examples 3.4 and 3.5 discussed above, the colon operators are used

appropriately to define vectors. Even, any vector of values can in general be used in

“for loop”, as demonstrated in the next example.

Example 3.7: The following program demonstrates the sum of values of a pre-defined

vector.

Sum = 0

v = [1, 9, %e, 5]

for i=v

 Sum = Sum + i

end

disp("Sum of values in the vector v:")

disp(Sum)

In the above program coded in SciNotes, the variable i takes repeatedly and

sequentially values from the vector v and corresponding to each value taken by the

variable i, it is added to the variable Sum. The output of this program in terms of the

final value of variable Sum gives the desired results, which is depicted as following.

-->exec('D:\SCILAB\Ch3_2_Ex7_for_loop.sce', -1)

Programming using SCILAB Page 53

Sum of values in the vector v:

 17.718282

Exercise 3.2

1. Write a Scilab program to compute sum of first ‘n’ natural numbers.

2. Write a Scilab program to compute factorial of a natural number ‘n’.

3. Write a Scilab program to obtain the Fibonacci sequence with ‘n’ members, and

Fibonacci series with ‘n’ terms.

4. Write a Scilab program to test whether a given number is prime number or not.

5. Write a Scilab program using for loop to compute the sum of two given matrices, if they

are of comparable order.

6. Write a Scilab program using for loop to compute the matrix multiplication of two

given matrices, if they are of comparable order. Verify the obtained matrix by using

Scilab matrix multiplication operator ‘*’.

7. Write a Scilab program to sorting (arrange) a set of numbers in ascending and

descending order.

8. Write a Scilab program to compute the number of permutations & number of

combinations for given values of ‘n’ and ‘r’.

3.2.2 The while statement

Some situations appropriate to looping statements are encountered some times

during the programming where it the termination point for the loop cannot be

identified in advance as an exact number, unlike the for loop. Rather, in such cases, the

termination is identified through some criterion which is expressible as a logical test

condition. Such situations are appropriate to be programmed as a “while statement”.

The general format of while statement is

while (logical test)

Scilab Command 1

Scilab Command 2

...

end

Let us learn use of while statement through the following example.

Programming using SCILAB Page 54

Example 3.8: The following program computes the sum of digits of a natural number.

n=input("Enter a natural number: ")

t=n

Sum=0

while (t~=0)

 digit = pmodulo(t,10)

 Sum=Sum+digit

 t=int(t/10)

end

disp("The sum of digits of the number " + string(n) + " is "+

string(Sum)+".")

The output upon the execution of this program is as following.

-->exec('D:\SCILAB\Ch3_2_Ex8_while_loop.sce', -1)

Enter a natural number: 145

 The sum of digits of the number 145 is 10.

Exercise 3.3

1. Write a Scilab program to find the number of digits of a natural number ‘n’.

2. Write a Scilab program to obtain a number with digits as the reverse of a given natural

number ‘n’.

3. Write a Scilab program to test whether a given number is Palindrome.

4. Write a Scilab program to test whether a given number is Armstrong number.

5. Write a Scilab program to obtain the binary equivalent of a given decimal number.

6. Write a Scilab program to obtain the decimal equivalent of a given binary number.

7. Write a Scilab program to compute sum of first ‘n’ prime numbers.

Programming using SCILAB Page 55

Chapter 4: Functions

Functions in Scilab are programs developed to obtain mathematical outputs

upon their execution. Due to their mathematical outputs, it becomes more appropriate

to use function for further mathematical use computations. For example, if outputs of

programs 4 and 5 of Exercise 3.3 are in the form of a string, then it is difficult to use

these outputs for further processing of information drawn through their outputs.

Rather, if the output of both the programs be obtained in terms of numbers or Boolean

variables, then the further processing of outputs becomes convenient. To understand

this, let us test whether a given number is a Palindrome and Armstrong too. If the

output of both the programs are expressed in terms of numbers or Booleans instead of

messages conveyed as strings, then their conclusions can further be treated through

mathematical or logical operators. Knowing the usefulness of function programs, let us

learn first about how to call a function and use its output(s).

4.1 Calling a function

There are three main components of call of a Scilab function, as listed below.

 name of the function

 input argument(s)

 output argument(s).

The calling sequence of any function in most general form is as following:

[y1, ... ,yn] = function_name(x1, ... , xn)

Remarks: In the calling sequence of a function,

1. the function name is function_name;

2. input arguments are x1, ... , xn;

3. output arguments are y1, ... ,yn;

4. if there are multiple input or output arguments, then they should to be separated

by comma (,);

5. input argument(s) are to be enclosed in parenthesis (generally called round

brackets), i.e., “(” and “)”;

6. input argument(s) are to be enclosed in square brackets (or simply called

brackets), i.e., “[” and “]”;

Caution: Any space should not be given after the function name and after the left

parenthesis.

Programming using SCILAB Page 56

Built-in functions

There are multiple built-in functions in Scilab. Some of them we have discussed

in Section 1.4 of Chapter 1. Built-in functions are simply to be called for getting the

values of their output arguments by simply entering their correct calling sequence.

4.2 Defining a function

Scilab has been developed so that it can be extended by the users. Users can

develop their own programs as functions for better mathematical application. In this

section, let us learn the procedure and syntax of coding a function program in Scilab.

The coding of a function program is majorly like any general program except some

typical differences, which are as following.

1. The code of any function program has to start with the keyword function and

end with the keyword endfunction.

2. As function programs are intended to give mathematical outputs, so the

desirable outputs are needed to be assigned to the variables written as output

arguments.

3. As function programs, once developed, are used for multiple values of inputs

arguments, therefore whichever variables are used as inputs they should be

included as input arguments.

Syntax of a general function program code is as following:

function [y1, ... ,yn] = function_name(x1, ... , xn)

Scilab Command 1

Scilab Command 2

...

y1 = assign value

...

yn = assign value

endfunction

Remarks:

1. Space must be provided after output arguments and the assignment operator

sign “=”.

2. The name of the function must abide the rules of defining a valid variable name

in Scilab.

3. User defined function names should be avoided to be same as built-in function

names.

Programming using SCILAB Page 57

4. All the output variables must be assigned values in the code of the function

program.

5. A used defined function program is required to be executed before being called

for the first time. Execution is required again before calling the function program

for every time when the code is edited.

6. General Scilab programs are saved in the permanent memory of the computer

with the file extension “.sce”. Whereas, the function programs in Scilab are saved

with the file extension “.sci”. Over that, the file name of the program file must be

same as the function name.

Let us learn this through an example of a function program developed by modifying the

program in Example 3.3 in Chapter 3.

function [y]=signum(x)

 if (x == 0) then

 y = 0;

 elseif (x > 0) then

 y = 1;

 else

 y = -1;

 end

endfunction

This function can be executed and then called for different inputs as demonstrated

below.

-->exec('D:\SCILAB\signum.sci', -1)

-->[y] = signum(5)

 y =

 1.

-->[y] = signum(-10)

 y =

 - 1.

-->[y] = signum(0)

 y =

 0.

Programming using SCILAB Page 58

Remark: Variable names used in input and output arguments are local to the function

program. The interpretation of this concept demonstrated through the above-discussed

function program is given below.4

1. Although, x is the input variable for the above function program but it can be

called using any other variable name also. For example, for the above function

program:

-->a = 5;

-->[y] = signum(a)

 y =

 1.

This feature is due to a mechanism of Scilab explained as following. During the

call of function program signum with variable a used as input argument, Scilab

assigns the value of variable a to the local variable x and then computes the

value of variable y pertaining to the output argument.

2. Similarly, any variable name can be used as output variable during the call of a

function program. For example, for the above function program:

-->[b] = signum(a)

 b =

 1.

This feature is due to another mechanism of Scilab explained as following.

During the call of function program signum with input argument assigned value

directly or through variable, Scilab computes the value of variable y pertaining to

the output argument. It then assigns the computed value of variable y to the

variable b, because the call of the function program uses output argument as b.

Exercise 4

1. Write a Scilab program to solve a Quadratic Equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. The

input to the function are the values “𝑎, 𝑏, 𝑐” and the output of the function should

be in the variable names “𝑝, 𝑞” appropriately declared.

2. Write a Scilab program to compute sum of first ‘n’ natural numbers.

3. Write a Scilab program to compute factorial of a natural number ‘n’.

4 Same applies to built-in functions of Scilab also.

Programming using SCILAB Page 59

4. Write a Scilab program using for loop to compute the sum of two given matrices,

if they are of comparable order.

5. Write a Scilab program to compute the number of permutations & number of

combinations for given values of ‘n’ and ‘r’.

6. Write a Scilab program to compute sum of digits of a natural number ‘n’.

7. Write a Scilab program to find the number of digits of a natural number ‘n’.

8. Write a Scilab program to obtain a number with digits as the reverse of a given

natural number ‘n’.

9. Write a Scilab program to test whether a given number is Palindrome.

10. Write a Scilab program to test whether a given number is Armstrong number.

11. Write a Scilab program to obtain the binary equivalent of a given decimal

number.

12. Write a Scilab program to obtain the decimal equivalent of a given binary

number.

Programming using SCILAB Page 60

Chapter 5: Plotting

One of most useful and rapid ways of analysing data is through plots and

graphics. Supplementing reports on data analysis with plots and graphics is most

prevalently used practice since long in industry, academia, and research.

Scilab provides multiple built-in features for creating and customizing various

types of plots and charts. In this chapter, we will learn about creating 2D plots, contour

plots and 3D plots. In the final section of this chapter, we will learn about graphics

features available in Scilab for customizing the plots by labelling them with the title and

and axes lables, and the legend of our graphics.

Scilab enables plotting of multiple charts like 2-dimensional plots, Contour plots,

surface (3-dimensional) plots, histograms, bar charts, etc. The precise details of each of

these can be accessed through the help document of Scilab. Details are presented here

only for some of these basic plots while keeping into consideration the learning

objectives of beginners.

5.1 The 2-dimensional plot

This plotting feature of Scilab enables to produce a plot of the curve of a real-

valued function defined on a closed bounded interval. Of course, x-axis is used for

depicting the independent variable and y-axis for the dependent variable.

The 2-dimentional plot for any function 𝑓: ,𝑎, 𝑏- → ℝ, is obtained by joining

multiple points on x-y plane which lie on the graph of the function (i.e., 𝑥, 𝑓(𝑥) : 𝑥 ∈

,𝑎, 𝑏-). The steps for this are as following.

Step 1. First, the function is defined as a Scilab function. For example, for obtaining

the 2D plot of the function 𝑓: ,−2, 2- → ℝ as 𝑓(𝑥) = 𝑥2 . The function be

defined as:

function f_x=f(x)

 f_x = x.^2

endfunction

(Here, the output variable of the Scilab function program is computed using the

element-wise power. The reason for the same will get clear in Step 3.)

Programming using SCILAB Page 61

Step 2. For obtaining such multiple points of the graph of the function (say, n in

mumber), a vector of values in the domain ,𝑎, 𝑏- are taken.

For example, for predefined values of a, b, and n, the vector may be obtained

by the command:

xv = linspace(a, b, n)

Step 3. Then, the vector of corresponding image values can be obtained by calling the

function defined in Step 1. For example,

yv = f(xv)

(Here it should be observed that the input to above function is a vector,

therefore, the definition of function used appropriately the element-wise

power to accommodate squaring of the values of each element of the input

vector.)

Step 4. Finally, the plotting of the points on graph thus obtained is done by using the

built-in function plot as demonstrated below.

plot(xv, yv)

Example 5.1: Let us sequence these commands as a Scilab program to obtain the plot of

the function 𝑓(𝑥) = 𝑥2 , as defined in Step 1.

Program:

function f_x=f(x)

 f_x = x.^2

endfunction

a = -2; b = 2; n = 51

xv = linspace(a, b, n)

yv = f(xv)

plot(xv, yv)

Upon execution of this program, following figure appears as a 2D plot in the graphics

window of Scilab.

Programming using SCILAB Page 62

5.2 Contour plot

Closed curves on the 2-dimensional plane are called contours. Equation of a

contour is represented generally through implicit relation between variables x and y of

the form:

 𝑓(𝑥, 𝑦) = constant (1)

In the equation given above, different curves are represented for different values

of the constant. This indicates it as a family of contours across different values of

constant. Contours can be related with surface plots (discussed in the next section) as

level curves on a 3D surface. The reason behind this is that a 3D surface is represented

through the equation

 𝑧 = 𝑓(𝑥, 𝑦). (2)

Therefore, for each real number value of the constant in equation (1), contour

represents closed curve(s) obtained by slicing the surface (2) parallel to the x-y plane at

the level 𝑧 (i.e., keeping the variable 𝑧 as constant).

The plotting of contours is thereby appropriately visualized on x-y plane. Also, in

view of the above discussion, the computation for the purpose of plotting is done by

taking both 𝑥 and 𝑦 as independent variables, then obtaining values for the variable 𝑧

using the equation (2), and then using an appropriate plotting function.

The steps for this are as following.

Step 1. First, the function 𝑓(𝑥, 𝑦) is defined as a Scilab function with two input

arguments. For example, for obtaining contour plots for the function

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 over the 2-dimensional region given by ,−2, 2- × ,−2, 2-.

The function be defined as:

Programming using SCILAB Page 63

function z=f2(x, y)

 z = x.^2 + y.^2

endfunction

(Here, the output variable of the Scilab function program is computed using the

element-wise power due to the same reason as explained in the previous

section.)

Step 2. Following the theory discussed above, vectors of values both 𝑥 and 𝑦 variables

are obtained in their respective domains say, ,𝑎, 𝑏- × ,𝑐, 𝑑-.

For example, for predefined values of a, b, c, d, and n, vectors may be obtained

by the commands:

xv = linspace(-2, 2, 50)

yv = linspace(-2, 2, 50)

Step 3. Then, the vector of corresponding image values can be obtained by calling the

function defined in Step 1. For example,

zv = f2(xv, yv);

Step 4. Finally, contours are plotted using the built-in function contour as

demonstrated below.

contour(xv, yv, f2, n)

Here, n represents the number of contours to be plotted.

Example 5.2: Let us sequence these commands as a Scilab program to obtain the

contour plot of the function 𝑓(𝑥) = 𝑥2 + 𝑦2, as defined in Step 1.

Program:

function [z]= Contour_Plot()

 xdata = linspace(-2, 2, 50);

 ydata = linspace(-2, 2, 50);

 z = f2(xdata, ydata);

 xtitle("Contours for the function x^2 + y^2", "X-

axis", "Y-axis")

 contour(xdata, ydata, f2, 5)

endfunction

Programming using SCILAB Page 64

Upon execution of this program, following figure appears as contour plot in the graphics
window of Scilab.

5.3 The 3-dimensional plot (Surface plot)

Suppose that a 3D surface be represented through the equation

 𝑧 = 𝑓(𝑥, 𝑦). (2)

The plotting of 3D surface is done by performing the steps as given below.

Step 1. First, the function 𝑓(𝑥, 𝑦) is defined as a Scilab function with two input

arguments. For example, for obtaining the 3-D plot for the surface

𝑧 = 𝑓(𝑥, 𝑦) = 𝑥𝑦(sin 𝑥 + 2 cos 𝑦) over the 2-dimensional region given by

,−2, 2- × ,−2, 2-. The function be defined as:

function z=f2(x, y)

 X.*Y.*(sin(X) + 2*cos(Y));

endfunction

(Instead of defining the function separately, it may alternatively be used

directly along the main program.)

Programming using SCILAB Page 65

Step 2. Following the same theory as discussed in the previous section, vectors of

values both 𝑥 and 𝑦 variables are obtained in their respective domains say,

,𝑎, 𝑏- × ,𝑐, 𝑑-.

For example, for predefined values of a, b, c, d, and n, vectors may be obtained

by the commands:

xv = linspace(-2, 2, 50)

yv = linspace(-2, 2, 50)

Step 3. A meshgrid is to be created for obtaining points (𝑥, 𝑦) with coordinates given

by components of vectors created in the previous step. The built-in function

meshgrid is used for this purpose for creating the cross product of vectors

xv and yv, as demonstrated below.

[X,Y] = meshgrid(xdata, ydata);

Step 4. Then, the vector of corresponding image values can be obtained by calling the

function defined in Step 1. For example,

zv = f2(xv, yv);

Step 5. Finally, the 3-dimensional surface is plotted using the built-in function surf

as demonstrated below.

surf(xv, yv, zv)

Example 5.3: Let us sequence these commands as a Scilab program to obtain the 3-D

plot of the surface given by 𝑧 = 𝑥𝑦(sin 𝑥 + 2 cos 𝑦), as defined in Step 1.

Program:

function [X, Y, Z]=Surface_Plot()

 xdata = linspace(-10, 10, 50)

 ydata = linspace(-10, 10, 50)

 [X,Y] = meshgrid(xdata, ydata);

 Z = X.*Y.*(sin(X) + 2*cos(Y));

 surf(X,Y,Z)

endfunction

Upon execution of this program, following figure appears as a 3-D plot in the graphics
window of Scilab.

Programming using SCILAB Page 66

5.4 Titles, axis, legends and Style options

Scilab is equipped with a wide variety of graphics features. In this section, we

will learn about the most basic features, particularly, which enable the user to configure

the title, axis and legends on x-y plot.

Title

The title command enables to give the introductory detail of the figure in the

form of a message coded as a string. The syntax of this command is

title("Title as a string")

Axis

To configure the labelling of both the axis of a 2-D plotting, appropriate messages

(coded as a strings) can be used through the command having a syntax as demonstrated

below.

xtitle("Title as a string", "X-axis", "Y-axis")

Legends

While plotting multiple curves in a single figure, labels can be given to each curve

for its identification using the legends. The syntax of this command is

legend("String 1" , "String 2");

For using the legend command, the plot command is required to be used with

its advanced feature by specifying it color or style option. Therefore, user needs to learn

these options also for using the feature of configuring legend of a 2D-plot.

Programming using SCILAB Page 67

Style options

A more general syntax of plot command is as following.

plot(xv,yv, "Style option")

The style option in the plot command is a character string that consists of 1, 2 or 3

characters that specify the color and/or the line style. Different color, line-style and

marker-style options are summarized in following Table.

Color style-option Line style-option Marker style-option

y yellow - solid + plus sign

m magenta -- dashed o circle

c cyan : dotted * Asterisk

r red -. dash-dot x x-mark

g green . Point

b blue ^ up triangle

w white s square

k black d diamond

Example 5.3: All these graphics configurations are demonstrated through the following

program for plotting of curves 𝑦 = 𝑥2 and 𝑦 = 𝑥4 in a 2D-plot.

Program:

function f=myquadratic(x)

 f= x.^2

endfunction

function f=myquadratic2(x)

 f= x.^4

endfunction

xdata = linspace(-2,2,50);

ydata = myquadratic(xdata);

plot(xdata,ydata, "+-")

ydata2 = myquadratic2(xdata);

plot(xdata, ydata2 ,"o-")

xtitle("THE GRAPH OF f(x)=x^2 AND f(x)=x^4" , "X AXIS" ,

"Y AXIS");

legend("x.^2" , "x.^4");

The output of this program comes out as a 2D-plot given below.

Programming using SCILAB Page 68

Exercise 5

1. Write a Scilab program to obtain the plot of 2-dimensional graph of a given

function with single input argument and single output argument. The given

function is 𝑓(𝑥) = 𝑥2 in the domain ,−2, 2-. Label the title of the figure and axes

appropriately. Demonstrate the use of style options in the program.

2. Write a Scilab program to obtain the plot of 2-dimensional graph of two given

function with single input argument and single output argument. The given

function is 𝑓(𝑥) = 𝑥2 and 𝑔(𝑥) = 𝑥3 in the domain ,−2, 2-. Label the title of the

figure and axes appropriately. Demonstrate the use of style options and legends

in the program to distinguish the two curves while plotting the figure.

3. Write a Scilab program to obtain plot a contour plot of a given function with two

input arguments and single output argument. The given function is 𝑓(𝑥, 𝑦) =
𝑥2

4
+

𝑦2

9
, where each of 𝑥 and 𝑦 to vary in the interval ,−10, 10-. Label the title of

the figure and axes appropriately.

4. Write a Scilab function program for 3-dimensional surface plot of a given

function with two input arguments and single output arguments. The given

function is 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2, where each of 𝑥 and 𝑦 to vary in the interval

,−50, 50-. Label the title of the figure and axes appropriately.

Programming using SCILAB Page 69

Programming using SCILAB Page 70

Chapter 6: Solving Ordinary Differential

Equations

There are multiple numerical methods available to solve differential equations

for approximate solutions. Programs can be coded for such methods by learning their

procedural details. Also, a package of built-in functions for these methods is developed

by creators of Scilab with the name ode. The package is detailed in the help document

of Scilab. All those detailed are compiled here from the same source.

6.1 Solving first-order ordinary differential equations

The package ode which solves explicit ordinary different equations given by:

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)

𝑦(𝑡0) = 𝑦0.

Calling sequence

The simplest call of ode is:

y = ode(y0,t0,t,f)

In this calling sequence,

 y0 is the vector of initial conditions, t0 is the initial time,

 t is the vector of times at which the solution y is computed and y is matrix of

solution vectors given by y = [y(t(1)),y(t(2)),...].

 The input argument f defines the right hand side of the first order differential

equation.

 This argument is a function with a specific header. If f is a Scilab function, its

calling sequence must be

ydot = f(t,y)

where t is a real scalar (the time) and y is a real vector (the state) and ydot is a

real vector (the first order derivative
𝑑𝑦

𝑑𝑡
).

Programming using SCILAB Page 71

The Solver

The type of problem solved and the method used depend on the value of the first

optional argument type which can be one of the following strings:

<not

given>

lsoda solver of package ODEPACK is called by default. It

automatically selects between nonstiff predictor-corrector Adams

method and stiff Backward Differentiation Formula (BDF) method. It

uses nonstiff method initially and dynamically monitors data in

order to decide which method to use.

"adams" This is for nonstiff problems. lsode solver of package ODEPACK is

called and it uses the Adams method.

"stiff" This is for stiff problems. lsode solver of package ODEPACK is

called and it uses the BDF method.

"rk" Adaptive Runge-Kutta of order 4 (RK4) method.

"rkf" The Shampine and Watts program based on Fehlberg's Runge-Kutta

pair of order 4 and 5 (RKF45) method is used. This is for non-stiff

and mildly stiff problems when derivative evaluations are

inexpensive. This method should generally not be used when the

user is demanding high accuracy.

"fix" Same solver as "rkf", but the user interface is very simple, i.e., only

rtol and atol parameters can be passed to the solver. *

"root" ODE solver with rootfinding capabilities. The lsodar solver of

package ODEPACK is used. It is a variant of the lsoda solver where

it finds the roots of a given vector function. See help on ode_root for

more details.

"discrete" Discrete time simulation. See help on ode_discrete for more details.

* The tolerances rtol and atol are thresholds for relative and absolute estimated errors.

The estimated error on y(i) is: rtol(i)*abs(y(i))+atol(i) and integration is

carried out as far as this error is small for all components of the state. If rtol and/or

atol is a constant, rtol(i) and/or atol(i) are set to this constant value. Default

values for rtol and atol are respectively rtol=1.d-5 and atol=1.d-7 for most

solvers and rtol=1.d-3 and atol=1.d-4 for "rfk" and "fix".

ode_root.html
ode_discrete.html

Programming using SCILAB Page 72

Example 6.1: In the following example, we solve the Ordinary Differential Equation
𝑑𝑦

𝑑𝑡
= 𝑦2 − 𝑦 sin 𝑡 + cos 𝑡 with the initial condition 𝑦(0) = 0. We use the default solver.

function ydot=f(t, y)

 ydot=y^2-y*sin(t)+cos(t)

endfunction

y0=0;

t0=0;

t=0:0.1:%pi;

y = ode(y0,t0,t,f);

plot(t,y)

Output:

Example 6.2: In the following example, we solve the equation
𝑑𝑦

𝑑𝑡
= 𝐴𝑦. The exact

solution is y(t)=expm(A*t)*y(0), where expm is the matrix exponential. The

unknown is the 2 × 1 matrix y(t).

function ydot=f(t, y)

 ydot=A*y

endfunction

function J=Jacobian(t, y)

 J=A

endfunction

A=[10,0;0,-1];

y0=[0;1];

t0=0;

t=1;

Programming using SCILAB Page 73

y=ode("stiff",y0,t0,t,f,Jacobian)

disp("Solution given by the solver:")

disp("y = ")

disp(y)

// Compare with exact solution:

disp("Exact solution:")

disp("y = ")

disp(expm(A*t)*y0)

Output:

Solution given by the solver:

 y =

 0.

 0.3678794

 Exact solution:

 y =

 0.

 0.3678794

6.2 Solving second-order ordinary differential equations

As a package for solving first-order ordinary differential equations is available in

Scilab, the same can be used to solve second-order ordinary differential equations also

just by using a substitution procedure. In this section, we will learn the procedure for

this purpose and then we can use the package learnt in previous. Let us consider a

second-order ordinary differential equation with initial conditions as given below.

𝑑2𝑦

𝑑𝑡2
+ 𝑔(𝑡)

𝑑𝑦

𝑑𝑡
 = 𝑓(𝑡, 𝑦)

𝑦(𝑡0) = 𝑦0, 𝑦′(𝑡0) = 𝑦1.

Such a differential equation can be dealt with the substitution:

𝑤 =
𝑑𝑦

𝑑𝑡
.

This reduces the given second-order ordinary differential equation into a pair of

first-order ordinary differential equations, as expressed below.

𝑑𝑦

𝑑𝑡
= 𝑤

Programming using SCILAB Page 74

𝑑𝑤

𝑑𝑡
+ 𝑔(𝑡)𝑤 = 𝑓(𝑡, 𝑦)

This system of first-order ordinary differential equations can be arranged into a

vector for as:

𝑑𝑥

𝑑𝑡
= 𝐹(𝑡, 𝑥),

where 𝑥 =
𝑦
𝑤

 , 𝐹(𝑡, 𝑥) =
𝑤

𝑓(𝑡, 𝑦) − 𝑔(𝑡)𝑤 = ,𝑤; 𝑓(𝑡, 𝑦) − 𝑔(𝑡)𝑤-, and therefore

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
𝑑𝑤

𝑑𝑡

 =
𝑑𝑦

𝑑𝑡
 ;

𝑑𝑤

𝑑𝑡
 .

Example 6.3: Through this example, we solve demonstrate the procedure to simplify

appropriately the second-order ordinary differential equation
𝑑2𝑦

𝑑𝑡2
= sin 2𝑡 with initial

conditions 𝑦(0) = 0 and 𝑦′(0) = −1/2.

Procedure: Let us convert the given second-order ordinary differential equation into a

first-order one, by an appropriate substitution

𝑑𝑦

𝑑𝑡
= 𝑧.

Thereby, the given equation reduces to

𝑑𝑤

𝑑𝑡
= sin 2𝑡.

This forms the vectorized first-order differential equation

𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥)

where 𝑥 = ,𝑦; 𝑤-, 𝑓(𝑡, 𝑥) = ,𝑤; sin 2𝑡-, and therefore

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
 ;

𝑑𝑤

𝑑𝑡
 .

The derivative function in Scilab can thus be defined as following.

function dx=f(t, x)

 dx(1)=x(2)+cos(t)

 dx(2)= sin(2*t)

endfunction

Programming using SCILAB Page 75

Some more examples are provided in the help document on solving ordinary

differential equations by specifying other solvers as listed in the table given above.

Details presented here are sufficient for learning the basics of ode package of Scilab

and using the same for solving simpler ordinary differential equations with initial

conditions. Readers interested in learning this package in a detail are suggested for

referring to the ode package in the “Differential calculus, Integration” section of the

help document.

Exercise 6

1. Solve and plot the graph of the solution of following ordinary differential

equation

𝑑𝑦

𝑑𝑡
= 𝑦2 − 𝑦 sin 𝑡 + cos 𝑡

with initial value 𝑦(0) = 0 (i.e., 𝑦0 = 0 at 𝑡0 = 0).

2. Solve and plot the graph of the solution of following ordinary differential

equation

𝑑𝑦

𝑑𝑡
= 10𝑦

with initial value 𝑦(0) = 5.

3. Solve and plot the graph of the solution of following ordinary differential

equation

𝑦′′ = 2

with initial value 𝑦(0) = 5, 𝑦′(0) = 6.

Programming using SCILAB Page 76

Chapter 7: Polynomials in Scilab

Polynomials play an important role in multiple areas of Mathematics. Especially,

discussions of matrix theory and algebra mainly require dealing with polynomials.

Scilab enables defining polynomials, their operations and handling of matrices of

polynomials. Let us learn about defining polynomials in Scilab in the first section of this

chapter. In the later sections, we will learn about different operations on polynomials.

7.1 Defining polynomials

Scilab-keyword poly is used for defining a polynomial with the calling sequence

discussed below.

p = poly(a, vname, ["flag"])

where, the details of arguments of this calling sequence are as given below.

A a matrix or real number

vname a string, for defining the symbolic variable name.

(The string must be maximum 4 characters.)

"flag" string ("roots", "coeff"), for specifying that values given in vector

a are to be considered as roots or coefficients of the polynomial being

defined.

default value is "roots"

Shortcuts can be also used: "r" for "roots" and "c" for "coeff".

Let us learn the concept of defining polynomials in some detail through the

discussion given below. The discussion can be separated into two sections, depending

on the type of first argument being used.

7.1.1 Case when the first argument ‘a’ is a vector

For the case, when the first argument „a‟ is a vector, component values of the

vector represent either the coefficients of the polynomial or the roots of the

Programming using SCILAB Page 77

polynomial, depending upon the specification through the third argument specified as

"coeff" or "roots", respectively.

Example 7.1: For defining a polynomial 2 + 5𝑥 + 4𝑥3 and 1 + 2𝑦 + 3𝑦2 + 4𝑦3in Scilab

the following commands are to be used.

p1 = poly([2, 5, 0, 4], “x”, “coeff”)

p2 = poly([1, 2, 3, 4], “y”, “coeff”)

Output: The output, when displayed, would appear in Scilab Console, as is
demonstrated below.

p1 =

 3

 2 + 5x + 4x

p2 =

 2 3

 1 + 2y + 3y + 4y

Example 7.2: For defining a polynomial in Scilab, in variable 𝑥 which has roots four

roots, namely, 2, 5, 0, and 4, the following command is to be used.

p3 = poly([2, 5, 0, 4], “x”, “roots”)

Output: The output, when displayed, would appear in Scilab Console, as is
demonstrated below.

p3 =

 2 3 4

 - 40x + 38x - 11x + x

Remark 1: The same output can be achieved by a similar command in which the third

input argument is not mentioned. This is demonstrated through the following

command.

p3 = poly([2, 5, 0, 4], “x”)

Another way of defining polynomials with specified coefficients and specified

symbol variable is by first defining the seed for polynomial and then defining the

polynomial as demonstrated below.

For defining a polynomial in a symbol variable ‘s’, the seed for polynomial is

defined using the following command.

Programming using SCILAB Page 78

s = poly(0,"s");

This command given above to define the seed for polynomial basically defines s

as a polynomial in symbol variable s. A polynomial in the symbol variable ‘s’ using this

seed for polynomial can be defined using the following command.

p = 1+s+2*s^2;

This defines the polynomial 𝑝 = 1 + 𝑠 + 2𝑠2 in symbol variable “𝑠”.

Remark 2: Polynomials can be defined by either of the procedure as described above in

the main discussion vis-à-vis through the procedure described in the remark 1. The

same can be verified through a small exercise performed in the Console itself, as

demonstrated below.

-->s=poly(0,"s")

 s =

 s

 -->p=1+s+2*s^2

 p =

 2

 1 + s + 2s

 -->p1 = poly([1, 1, 2], "s", "coeff")

 p1 =

 2

 1 + s + 2s

-->p==p1

 ans =

 T

7.1.2 Case when the first argument ‘a’ is a 2-dimensional matrix

For the case, when the first argument „a‟ is a 2-dimensional matrix, the calling

sequence

Programming using SCILAB Page 79

p = poly(a, "s")

gives the characteristic polynomial corresponding to the matrix stored in the

variable name „a‟.

For example,

-->A=ones(2,2)

 A =

 1. 1.

 1. 1.

-->poly(A,"x")

 ans =

 2

 - 2x + x

-->B = [0, 1; 1, 0]

 B =

 0. 1.

 1. 0.

-->poly(B,"x")

 ans =

 2

 - 1 + x

7.2 Matrices of polynomials

The way matrices of real or complex numbers can be defined in Scilab, matrices

of polynomials can also be defined in this software. For this purpose, first the seed for

polynomials is needed to be defined, and then matrices of polynomials the defined

symbol variable can be defined using the same rules as we define matrices of numbers.

This procedure is demonstrated below through a Scilab session in Console.

-->s=poly(0,'s')

 s =

Programming using SCILAB Page 80

 s

-->M1 = [1+s, 1+s^2; s-s^3, 2+s]

 M1 =

 2

 1 + s 1 + s

 3

 s - s 2 + s

7.3 Operations on polynomials or matrices of polynomials

7.3.1 Operations on polynomials

Algebraic operations on the polynomials can be performed with their natural

symbols, as are used for numbers or matrices. The addition, subtraction,

multiplications, division of polynomials is demonstrated through a Scilab session in

Console.

-->p1 = poly([1, 2, 3, 4], 'x', 'coeff')

 p1 =

 2 3

 1 + 2x + 3x + 4x

-->p2 = poly([2, 4, 0, 9, 5], 'x', 'coeff')

 p2 =

 3 4

 2 + 4x + 9x + 5x

-->p3 = p1 + p2

 p3 =

 2 3 4

 3 + 6x + 3x + 13x + 5x

-->p4 = p1 - p2

Programming using SCILAB Page 81

 p4 =

 2 3 4

 - 1 - 2x + 3x - 5x - 5x

-->p5 = p1 * p2

 p5 =

 2 3 4 5 6 7

 2 + 8x + 14x + 29x + 39x + 37x + 51x + 20x

-->p6 = p1/p2

 p6 =

 2 3

 1 + 2x + 3x + 4x

 3 4

 2 + 4x + 9x + 5x

-->p7 = 2*p1

 p7 =

 2 3

 2 + 4x + 6x + 8x

7.3.2 Operations on matrices of polynomials

Appropriate algebraic operations on the matrices of polynomials can be

performed with their natural symbols, as are used for matrices of numbers. The

addition, subtraction, multiplications, division of polynomials is demonstrated through

a Scilab session in Console.

-->s=poly(0,'s')

 s =

 s

Programming using SCILAB Page 82

-->M1 = [1+s, 1+s^2; s-s^3, 2+s]

 M1 =

 2

 1 + s 1 + s

 3

 s - s 2 + s

-->M2 = [1+s^2, -s; s^3, -2+s^2+s^3]

 M2 =

 2

 1 + s - s

 3 2 3

 s - 2 + s + s

 -->M1+M2

 ans =

 2 2

 2 + s + s 1 - s + s

 2 3

 s s + s + s

-->M3 = 2*M1

 M3 =

 2

 2 + 2s 2 + 2s

 3

 2s - 2s 4 + 2s

-->M4 = M1 - M2

 M4 =

 2 2

 s - s 1 + s + s

 3 2 3

 s - 2s 4 + s - s - s

Programming using SCILAB Page 83

-->M5 = M1*M2

 M5 =

 2 3 5 2 3 4 5

 1 + s + s + 2s + s - 2 - s - 2s + s + s + s

 3 4 5 2 3 4

 s + 2s + s - s - 4 - 2s + s + 3s + 2s

7.4 Evaluation of polynomials

The evaluation of polynomials at some values of matrices is done in Scilab using

the Scilab built-in function horner. The calling sequence of this function is as following.

horner(P,x)

In this calling sequence, the arguments have interpretation given by:

P polynomial or rational matrix

x array of numbers or polynomials or rationals

This function evaluates the polynomial or rational matrix P = P(s) when the variable

s of the polynomial is replaced by x:

horner(P,x)=P(x)

Some examples from a Scilab session demonstrate the working of this function.

-->s=poly(0,'s')

-->P=1 + 2*s + 3*s^2

P =

 2

 1 + 2s + 3s

-->horner(P,1)

 ans =

 6.

-->horner(P,0)

Programming using SCILAB Page 84

 ans =

 1.

// Evaluation of polynomial at another polynomial

-->horner(P,s)

 ans =

 2

 1 + 2s + 3s

-->horner(P,s^2)

 ans =

 2 4

 1 + 2s + 3s

-->x=poly(0,'x')

 x =

 x

-->horner(P,x)

 ans =

 2

 1 + 2x + 3x

// Evaluation of polynomial at a vector

-->horner(P,[1 2 5])

 ans =

 6. 17. 86.

// Evaluation of polynomial at a matrix

-->A=eye(2, 2)

 A =

Programming using SCILAB Page 85

 1. 0.

 0. 1.

-->horner(P, A)

 ans =

 6. 1.

 1. 6.

// Evaluation of polynomial at a complex number

-->horner(P,%i)

 ans =

 - 2. + 2.i

// Evaluation of a matrix of polynomials or rationals

-->M = [s, 1/s]

-->horner(M, 1)

ans =

 1. 1.

-->horner(M,1/s)

 ans =

 1 s

 - -

 s 1

// Evaluation of a polynomial for a matrix of numbers

-->X= [1 2; 3 4]

 X =

 1. 2.

 3. 4.

Programming using SCILAB Page 86

-->p

 p =

 2

 1 + s + 2s

-->p=poly(1:3,'x','c')

 p =

 2

 1 + 2x + 3x

-->m=horner(p, X)

 m =

 6. 17.

 34. 57.

-->1*X.^0+2*X.^1+3*X.^2

 ans =

 6. 17.

 34. 57.

Observation: The last command confirms that the horner function evaluates a

polynomial on a matrix, in a pointwise manner. The same may be confirmed through the

following commands in a continuation of previous ones.

-->Y= [1 2 3; 4 5 6]

 Y =

 1. 2. 3.

 4. 5. 6.

-->m1=horner(p, Y)

 m1 =

 6. 17. 34.

 57. 86. 121.

Programming using SCILAB Page 87

-->1*Y.^0+2*Y.^1+3*Y.^2

 ans =

 6. 17. 34.

 57. 86. 121.

There are many more built-in functions enabling mathematical treatment of

polynomials. Listing and explaining each one of them with only add pages in the book.

As details of each of such functions can be explored through the help document also of

the software, therefore it would be sufficient to conclude the chapter here with ample

demonstration of basics of the topic. Readers are suggested to explore the

“Polynomials” section of the help document for acquiring further knowledge on

additional functions.

Exercise 7

1. Write a Scilab function program to perform the following:

(a) Define and display two polynomials in 𝑥, as

 𝑝1(𝑥) = 1 + 2𝑥 + 3𝑥2 + 4𝑥3,

 and 𝑝2(𝑥) = 2 + 4𝑥 + 9𝑥3 + 5𝑥4.

(b) Obtain and display the sum, difference, product, and fraction of above two

polynomials, as

𝑝3(𝑥) = 𝑝1(𝑥) + 𝑝2(𝑥),

𝑝4(𝑥) = 𝑝1(𝑥) − 𝑝2(𝑥),

𝑝5(𝑥) = 𝑝1(𝑥) ∗ 𝑝2(𝑥),

𝑝6(𝑥) =
𝑝1(𝑥)

𝑝2(𝑥)
.

(c) Evaluate each of above defined six polynomials at a given value or a matrix

(pointwise, in case of matrices).

Call this function for testing with input as (1) 𝑥 = 1, (2) 𝑥 =
1 2 3
0 1 1

 .

2. Write a Scilab program to:

(a) Obtain the characteristic polynomial as 𝑝𝐴(𝑥) for a given matrix 𝐴 as an

input argument.

Programming using SCILAB Page 88

(b) Obtain the characteristic roots of the given matrix 𝐴 by solving the equation

𝑝𝐴(𝑥) = 0 for its roots by calling the Scilab in-built function roots.

(c) Obtain characteristic roots of the given matrix 𝐴, the spec function on 𝐴.

(d) Test whether the characteristic roots obtained by method (b) and (c) are

equal.

(e) Call this function for testing with input as each of the following three

matrices

(1) 𝐴 =
1 2
0 1

 ,

(2) 𝐴 =
1 2
0 2

 ,

(3) 𝐴 =
1 2 3
0 2 4
0 0 4

 .

