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Preface 

 

This book has come up mainly to help the students of fifth semester of B.Sc. 

Mathematics course of Pondicherry University for their theory and practical papers on Scilab. 

I have made my best efforts for writing this book which should enable the students to 

understand the concepts by self-study itself. For this purpose, there is a plethora of exemplary 

demonstrations through codes and figures.   

The book comprises of seven chapters followed by the bibliography. 

The Chapter 1 gives a basic introduction to Scilab giving basic idea on how to install 

Scilab, it components, and its use for basic mathematical calculations. The use of matrices 

and matrix operations in Scilab is introduced in Chapter 2. In Chapter 3, fundamentals of 

programming in Scilab as a programming language are introduced. Chapter 4 discusses on 

developing Scilab programs as functions for use of the outputs in further computations. 

Chapter 5 is about plotting of graphics. The Scilab package for numerically solving ordinary 

differential equations with initial conditions is discussed in Chapter 6. Dealing with 

polynomials using Scilab is detailed in Chapter 7. 

It is suggested for readers of this book to learn each of introduced concepts practically 

through a side-by-side implementation and experimentation of provided examples and 

exercises in Scilab. I hope that readers will enjoy the reading and learning of practical 

concepts through the book. 

Karaikal, 07-01-2022 

 

 

 



Chapter 1: An Introduction to Scilab 

 

Scilab is open source software and can be downloaded for installation from the 

web page of its developer organization viz.: https://scilab.org. The developer 

organization is presently owned by ESI group. Scilab is supported on UNIX, Macintosh, 

and Windows environments. 

Scilab is an interactive software system for developed for numerical 

computations and graphics. It is especially designed for matrix computations: solving 

systems of linear equations, performing matrix transformations, factoring matrices, 

and so forth. The developers of Scilab have created libraries of a large number of inbuilt 

mathematical functions. Over that, developers have supplemented Scilab with a wide 

range of packages of inbuilt programs, called toolboxes. These toolboxes, which are 

collections of inbuilt programs, have been developed for solving different problems of 

specific areas of practical applications by following specific methods or algorithms.  

Further, Scilab is developed to work as a programming language also, in a sense 

that the users can code their programs also just like any other programming language 

like C, C++ etc. Also, the inbuilt functions can be used into the users’ programs. In 

addition, it has a variety of graphical capabilities, and can be extended through 

programs written in its own programming language. This feature of Scilab makes it 

user friendly interactive software. 

Just like its commercial counterpart MATLAB, in Scilab also all the types of 

variables namely, real, complex, Boolean, integer, string and polynomial variables, are 

considered as matrices. Another salient feature of Scilab is that it understands the 

difference between real numbers and purely real complex numbers. 

Scilab Advantages 

 It simplifies the analysis of mathematical models 

 It frees you from coding in lower-level languages (saves a lot of time but with some 

computational speed penalties) 

 Provides an extensible programming/visualization environment 

 Provides professional looking graphs 

Scilab Disadvantages 

The only disadvantage of Scilab over the lower level computational programming 

languages is that it being an interpreted (i.e., not a pre-compiled) language can turn out 

as slow during large scale computations. 

https://scilab.org/download/6.1.1
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Remark: The choice of preferring Scilab over lower level computational programming 

languages depends upon the requirement of its additional graphics features and 

availability of inbuilt programs over the scale of the data of the problem to be solved. 

1.1 Getting Started 

Here, we will learn about the installation and use of the software in Windows 

operating system. Its use is similar in other operating systems also. Installation of the 

software is easy like any other software. The software gets ready after its installation 

into a computer system. Just like any other software, Scilab can be opened by Double 

clicking on the Scilab icon in desktop or by clicking on the icon appearing after the 

entering the name Scilab in the Windows search bar. The Scilab window should come 

up on your screen. It looks like this: 

 

This window is the default layout of the Scilab desktop. It is a set of tools for 

managing files, variables, and applications associated with Scilab.  

1. The Console is a command window used for entering Scilab functions and other 

commands at the command line prompt appearing as --> 

2. The Command History Window is used to view or execute previously run 

functions. 

3. The Current Directory/Workspace Window lists the folders/files in the Current 

Directory (where you are working) or the values and attributes of the variables you 

have defined.  
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4. The Current Directory line at the top tells you where Scilab thinks your files are 

located. This should always point to the folder that you are working in so that your 

files are saved in your own directory. An example would be to enter the pathname  

C:\Users\Maths50\Scilab\yourname 

or use the ... button to browse for a folder. 

This should always be done at the start of a new session. When you open a Scilab 

document, it opens in the associated tool. If the tool is not already open, it opens 

when you open the document and appears in the position it occupied when last 

used. Figures open undocked, regardless of the last position occupied.  

5. Scilab provides a variable browser, which displays the list of variables currently 

used in the environment.  

6. The Editor, named as SciNotes, is used to access and edit Scilab program files. The 

Scilab program files are called script files. The editor can be accessed from the menu 

of the console, under the Applications > SciNotes menu, or from the console, as 

presented in the following session. 

--> editor() 

7. Script Files: Script files are normal ASCII (text) files that contain Scilab commands. 

There are two types of script files in Scilab, namely, programs and functions. It is 

essential to suffix an appropriate extension name after these files. Extension name 

for program files is “.sce” (e.g., scriptname.sce) and for functions is “.sci” (e.g., 

functionscript.sci).  

8. Executing a Script file 

A script file can be executed using exec command, for example:  

-->exec('D:\Puducherry\Class_2021_10_12_for_Loop.sce', -1) 

This execution can alternatively be done by pressing the function key F5 while 

keeping the the script file in SciNotes as active Window. 

9. Calling a function program 

A function program can be called by typing its “calling sequence” appropriately in 

the Scilab console while supplying appropriate values of input arguments. 

Remark: If a user programmed function is to be called for computation, then user 

must execute it before calling the same, in every Scilab session or in case the 

function program is edited by the user.  
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1.2 Using Scilab as a calculator 

The basic arithmetic operators are + for addition, - for subtraction, * for 

multiplication, / for division, ^ for exponentiation, and these are used in conjunction 

with braces or commonly called round brackets ( ). The symbol ^ is used to get 

exponents (powers): 2^4 = 16. An alternative symbol used for the same purpose is 

**. 

Example: 

--> 2+3/4*5 

ans = 

    5.7500 

 

Note that in this calculation the result was 2+(3/4)*5 and not 2+3/(4*5) because 

Scilab works according to the priorities of operations given in the following order. 

1. quantities in brackets ( ) 

2. powers or exponent ^ or ** 

3. multiplication *, left division /, and right division \, working left to right 

4. addition + and subtraction -, working left to right 

 

1.3 Basic Elements of Scilab as a Programming Language 

As Scilab is an interpreted language, therefore there is no need to declare the 

type of a variable before using it. Variables are created by Scilab at the moment when 

they are first set (i.e., assigned a value). A value is assigned to a variable using the 

assignment operator, as detailed below. 

 

Assignment Operator 

 The assignment operator “=” is used for assigning a value (or a matrix) to 

variable. On the left hand side of “=” is placed a variable name to which the value on 

right hand side is to be assigned. For example, let us observe the following Scilab 

command demonstrating the use of assignment operator. 

-->x=1 

  x = 

       1. 
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There are rules of defining variable names for their use in Scilab. These are given below. 

 

Variable Names 

Variable names may be as long as the user wants, but only the first 24 characters 

are taken into account in Scilab. For consistency, we should consider only variable 

names which are not made of more than 24 characters. All ASCII letters from "a" to "z", 

from "A" to "Z" and from "0" to "9" are allowed, with the additional letters "%", "_", "#", 

"!", "$", "?".  

Caution: Variable names for which the first letter is "%" have a special meaning in 

Scilab. These represent the mathematical pre-defined variables, which are discussed in 

a later section. 

Variable names which are allowed and not allowed in Scilab are illustrated below. 

Allowed: NetCost, Left2Pay, x3, X3, z25c5 

Not allowed: Net-Cost, 2pay, %x, @sign 
 

Pre-defined mathematical variables 
 

Variable Name Description 

%pi the mathematical constant 𝜋 

%e Euler’s constant 𝑒 

%i the imaginary number 𝑖 

 

 

Input and output of Mathematical values in Scilab 

Apart from the real numbers (expressed in the natural way), complex numbers 

and Booleans are provided as inputs to Scilab in the formats given below. 

 Complex numbers 

Example: The complex number 2 +  3𝑖 is input in Scilab as: 2 + 3 * %i . 

 Booleans 

The truth value “True” is input in Scilab by using %t or %T, whereas the truth value 

“False” is input using %f or %F. 

Both these are discussed in detail in later sections. 
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Strings 

String is a sequence of characters. All the characters including all letter in both 

cases (i.e., from a to z and from A to Z), digits from 0 to 9 can be used in a string. Strings 

can be defined and then stored to any variable names by delimiting them in double 

quotes “ ” . Let us learn how to define strings through examples given below. 

-->A = "Scilab" 

 A  = 

Scilab    

-->B = "Software" 

 B  = 

Software    

Remarks: 

 Strings have no direct mathematical use. 

 They are used mainly for displaying a lingual message as a part of the output 

upon the execution of a program. 

The concatenation (i.e., join) of two strings can be done by using the 

concatenation operator (+). The use of concatenation operator is demonstrated below 

through a Scilab session. 

-->"Scilab" + "Software" 

 ans  = 

ScilabSoftware    

-->A+B 

 ans  = 

ScilabSoftware    

-->A + " " + B 

 ans  = 

  Scilab Software    

It is to be observed that only a string can be concatenated with a string. The 

concatenation of a string with a number is not possible. For this purpose, a function 

“string” is available in Scilab which converts a number to the string corresponding to 
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that number. This function can be used appropriately in a situation when there is a 

requirement of displaying an output message including the output value of some 

computation also. For example, 

-->a = 1 

 a  = 

    1.   

-->b = 2 

 b  = 

    2.   

-->c = a + b 

 c  = 

    3.   

-->"The sum of " + string(a) + " and " + string(b) + " is " + 

string(c) + "." 

 ans  = 

  The sum of 1 and 2 is 3.    

 

Suppressing the display of output 

The output of any command can be suppressed by ending the command that 

particular command with semicolon “;”.  For example, the Scilab command in console 

-->x = 2 

is returned with a display of the action performed as following 

x  = 

    2.   

Whereas, the Scilab command  

-->x = 2; 

does not display the action performed but will keep output in the computer’s temporary 

memory being used, in exactly same way as was done in the previous command. The 

value of this output for the variable x will remain there in the temporary memory 

(RAM) for further use, unless it changes by reassigning some other value to this variable 
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or the Scilab session is closed. Irrespective of the display of the output, the value 

assigned to the variable x can accessed any time from the variable browser in both the 

cases discussed above. 

  

Dynamic nature of variable in Scilab 

As Scilab is an interpreted language, therefore it allows dealing with variables in 

a dynamic way. The dynamic nature being referred here is in the sense that a variable 

set to a value of one particular type can later be used to reassign a value of different 

type also. The same is illustrated below in a Scilab session in Console. 

 

-->x = 2 + 3 * %i 

 x  = 

    2. + 3.i   

-->y = 4*x 

 y  = 

     8. + 12.i   

-->x = 5 

 x  = 

    5.   

-->y = 2*x 

 y  = 

    10.   

 

Comments and continuation lines 

Any text that follows // in a line is ignored by the compiler. The main purpose of 

this facility is to enable inserting comments in the script files. Inserting comments in a 

script file helps the programmer to read the code of a program with the help of 

summary messages about the commands. This provision of putting any line as a 

comment can be exploited even for editing or debugging script files also. 

Commands which are too long to be typed in a single line can be continued in 

multiple subsequent lines by putting two dots at the end of each previous line. In Scilab, 
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any line which ends with two dots is considered to be the start of a new continuation 

line.  

In the following Scilab session in Console, we give examples of Scilab comments and 

continuation lines. 

-->// This is my comment . 

-->x =1.. 

-->+2.. 

-->+3.. 

-->+4 

 x  = 

     10.   

 

Remark: At this stage of introduction of Scilab, the use of comments and continuation 

lines is demonstrated here through Console, but they are more justifiably used in script 

file also.  

 

1.4 Elementary mathematical functions 

Scilab has in-built elementary mathematical functions for their direct use into 

computations. Most of these functions take one input argument and return one output 

argument. These functions are vectorized in the sense that their input and output 

arguments are matrices. This allows computing data with higher performance, without 

any loop. The list of elementary mathematical functions is present in following tables.1  

Function 

Name 
Syntax Type of variable as 

input argument 
Description 

exp exp(X) 

scalar, vector, or 

vector (real or 

complex entries) 

exp(X) is the (element-wise) 

exponential of the entries of X. 

expm expm(X) 

a square matrix with 

real or complex 

entries. 

If X is a square matrix 
then expm(X) is the matrix 

expm(𝑋) =  𝐼 +  𝑋 +
𝑋2

2!
 + ⋯ 

log log(x) 
scalar, vector or 
matrix 

log(x) is the "element-wise" 

                                                           
1 A detailed description of these functions can be accessed from the help document of Scilab, which is 
available within the software and on the website of the Scilab developers as well. 
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logarithm 𝑦(𝑖, 𝑗) = 𝑙𝑜𝑔 𝑥(𝑖, 𝑗)  

log10 log10(x) 
scalar, vector or 

matrix 
base 10 logarithm  

log1p log1p(x) 
scalar, vector or 

matrix 

log1p(x) is the "element-wise" 
log(1 + 𝑥) function. 
y(i,j)=log(1 + x(i,j)). This 
function, defined for x > -1, 
must be used if we want to 
compute log(1+x) with 
accuracy for |x| << 1.  

log2 log2(x) 
scalar, vector or 

matrix 

log2(x) is the "element-wise" 
base 2 logarithm 
y(i,j)=log2(x(i,j)).  

logm logm(x) square matrix 

logm(x) is the matrix 
logarithm of x. The result is 
complex if x is not positive or 
definite positive. If x is a 
symmetric matrix, then 
calculation is made by Schur 
form. Otherwise, x is assumed 
diagonalizable. One has 
expm(logm(x))=x.  

max max(A) 
vector or matrix with 

real number values 
maximum value of matrix A 

min min(A) 
vector or matrix with 

real number values 
minimum value of matrix A 

modulo modulo(n,m) integers 
remainder of n divided 

by m (n and m integers) 

pmodulo pmodulo(n,m) integers 

positive arithmetic remainder 

of n divided 

by m (n and m integers) 

sign sign(A) 
real or complex 

matrix 

returns the matrix made of the 

signs of A(i,j). For complex A,  

sign(A) = A./abs(A). 

signm signm(A) 
real or complex 

matrix 

for square and Hermitian 

matrices X=signm(A) is matrix 

signum function. 

sqrt sqrt(x) 
real or complex scalar 

or vector 

returns the vector of the 

square root of the 𝑥 elements. 

Result is complex if  x  is 

negative. 

sqrtm sqrtm(x) 
real or complex 

square matrix 

the matrix square root of 

the x x matrix (x=y^2)  

Result may not be accurate 
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if x is not symmetric 

 

Remark: All the elementary mathematical functions listed above are discussed as real 

functions or real vector valued functions. Those mathematical functions which are 

extended from real to complex functions (for example, trigonometric, exponential and 

logarithmic functions) have same function names. This means that, if their input 

argument is a complex number, the same function returns the output as a complex 

number, behaving as a complex function. This feature of Scilab is phrased as 

“elementary functions in Scilab are overloaded for complex numbers”. The following 

Scilab session illustrates this feature. 

-->y = sin(%pi/2) 

 y  = 

     1.   

 -->w = sin(2 + 3 * %i) 

 w  = 

     9.1544991 - 4.168907i   

Some other functions provided in Scilab which help managing complex numbers are 

provided below. 

 

Functions to manage complex numbers 

Another salient feature of Scilab is that it understands the difference between 

real numbers and purely real complex numbers.  

Function Name Description 

real gives the real part of complex number 

imag gives the imaginary part of complex number 

imult performs multiplication of number in input with i 

isreal returns true if the variable has no complex entry 

 

Following Scilab session demonstrates the use of these functions. 

--> z = 2 + 3 * %i 
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 z  = 

     2. + 3.i   

 -->x = real(z) 

 x  = 

     2.   

 -->y = imag(z) 

 y  = 

     3.   

-->z1 = imult(z) 

 z1  = 

  - 3. + 2.i   

-->isreal(z) 

 ans  = 

  F   

-->isreal(2) 

 ans  = 

  T   

 

Remark: Scilab distinguishes between real and purely real complex numbers. This 

feature can be verified by appropriately using the isreal function as demonstrated 

below. 

-->z2 = 2 + 0 * %i 

 z2  = 

     2.   

-->isreal(z2) 

 ans  = 

   F   
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-->isreal(2) 

 ans  = 

   T   

 

Booleans 

Some comparison operators and logical connective operators available in Scilab 

are described given below. 

Comparison operators 

 

Operator Use Description 

== a==b returns truth value true if expression a is equal to b; otherwise 

false 

~= or <> a~=b 

or 

a<>b 

returns truth value true if expression a is not equal to b; 

otherwise false 

< a<b returns truth value true if a real expression a is less than b; 

otherwise false 

> a>b returns truth value true if a real expression a is greater than b; 

otherwise false 

<= a<=b returns truth value true if a real expression a is less than or 

equal to b; otherwise false 

>= a>=b returns truth value true if a expression a is greater than or 

equal to b; otherwise false 

 

Logical connective operators 

Operator Use Description 

& A&B logical AND operator: returns truth value true only for the case 

when both the logical expressions A and B have truth value true 

| A|B logical OR operator: returns truth value true for when at least  

one of the logical expressions A and B have truth value true 

~ ~A logical NOT operator: returns truth value true if the logical 

expressions A has truth value false and vice-versa 

 

The use of all the operators is demonstrated through a Scilab session in Console, as 

given below. 
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-->x = 1; 

-->y = 2; 

-->z = x + y; 

z  = 

    3.   

-->z==3 

ans  = 

   T   

-->x<y 

 ans  = 

  T   

-->x<=y 

 ans  = 

  T   

-->x>z 

 ans  = 

  F   

-->x>=1 

 ans  = 

  T   

-->x~=1 

 ans  = 

  F   

-->x<>1 

 ans  = 

  F   

-->z = (x==1) & (y==2) 
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 z  = 

   T   

-->z1 = (x==1) | (y==3) 

 z1  = 

   T   

-->z2 = ~z1 

 z2  = 

   F   

 

Strings 

String is an array of characters. To represent a string in Scilab, a set of characters 

is enclosed within double quotes (for example, “A string in Scilab”). 

 Strings can be stored in variables by using assignment operator, just as other values 

of real or complex numbers can be stored. 

 Concatenation (i.e., joining) of strings is done by using the concatenation operator +. 

The following Scilab session demonstrates the concatenation of two strings. 

-->x = "String " 

 x  = 

String     

-->y = "Concatenation" 

 y  = 

Concatenation    

-->z = x + y 

 z  = 

String Concatenation    

 

 The Scilab in-built function string gives the output as a string of numeric 

characters corresponding to any number supplied as input. Its use is demonstrated 

through a Scilab session in console. 
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-->m = 2; 

-->n = 4; 

-->string(m) + " divides " + string(n) 

ans  = 

2 divides 4    

 

 

Exercise 1 

In the console: 

1. Use assignment operator for creating and setting (assigning) variables to float value, 

string, Boolean values, 

2. Use of comment and continuation line, 

3. Use of inbuilt Mathematical function and operators,  

4. Use of pre-defined Mathematical variables, 

5. Use of Booleans and comparison operators, 

6. Use of complex numbers, and operations on them, 

7. Use of strings and concatenation operator, and use of comparison operator ‘==’ for 

comparison of two strings for checking their equality. 

8. Swap the values assigned to two variables without using third variable. 
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Chapter 2: Matrices 

 

Scilab works with essentially only one kind of object a rectangular, numerical 

array of numbers, possibly complex, called a matrix. In some situations, 1 × 1 matrices 

are interpreted as scalars and matrices with only one row or one column are 

interpreted as vectors. Matrices can be introduced into Scilab in several different ways: 

 Entered by an explicit list of elements. 

 Generated by built-in statements and functions. 

 Created in Script files. 

 Loaded from external data files. 

Scilab contains no size or type declarations for variables. Scilab allocates storage 

automatically, up to available memory. 

 

2.1 Vectors 

Vectors come in two formats - row vectors and column vectors. In either case 

they are lists of numbers separated by either commas or spaces.  

 The number of entries is known as the "length" of the vector and the entries 

are called elements or components of the vector.  

 The entries must be enclosed by square brackets "[" and "]". Entries of a row 

vector are separated by comma (,) or space. Whereas entries of a column vector 

are separated by semicolon (;). 

 A row vector can be transposed to a column vector and vice-versa using the 

transpose operator (.‟). Whereas, transpose conjugate operation be performed 

by using (‟). Thus, both of these operators give the output for real vectors. 

 Binary operations applicable on vectors are addition (+), subtraction (-), scalar 

multiplication (*), and dot product (.*). 

 A row (column) vector can be joined with another row (column) vector. The 

same is demonstrated below. 

Following Scilab session illustrates features of Scilab vectors discussed above. 

--> v = [1, 3, sqrt(5)] 

v =  

    1.    3.    2.236068 

--> length(v) 

ans =  
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    3. 

--> v2 = 3*v 

v2 =  

    3.    9.    6.7082039 

-->v + v2 

 ans  = 

     4.    12.    8.9442719   

-->v - v2 

 ans  = 

  - 2.  - 6.  - 4.472136   

-->v3 = v.' 

 v3  = 

    1.         

    3.         

    2.236068   

-->v4 = v2.' 

 v4  = 

    3.          

    9.          

    6.7082039 

-->v5 = [v, v2] 

 v5  = 

     1.    3.    2.236068    3.    9.    6.7082039   

 -->v6 = [v3; v4] 

 v6  = 

    1.          

    3.          

    2.236068    
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    3.          

    9.          

    6.7082039   

 -->v6 = [v3, v4] 

 v6  = 

    1.          3.          

    3.          9.          

    2.236068    6.7082039   

 

Remark:  1. It is to be noted from the above demonstration of Scilab session that the 

dimensions of vectors must agree for joining the vectors. 

2. In all vector arithmetic with vectors of equal length, the operations are 

carried out element-wise. 

Particular entries of a vector can be accessed and changed as demonstrated below. 

-->v 

 v  = 

    1.    3.    2.236068   

-->v(1) 

 ans  = 

    1.   

-->v(2) 

 ans  = 

    3.   

-->v(3) 

 ans  = 

    2.236068   

-->v(2) = 5 

 v  = 
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     1.    5.    2.236068   

 

2.1.1 Operations on Vectors 

In Scilab, operations are available for addition, subtraction, vector product,  

element-wise product, element-wise division, and element-wise power. 

Addition (+) and subtraction (-) of vectors 

The addition (+) and subtraction (-) operations in Scilab work element-wise by 

giving output as addition and subtraction of corresponding elements. For example: 

-->a = [5 7 9; 1 -3 -7], b = [-1 2 5; 9 0 5] 

 a  = 

    5.    7.    9.   

    1.  - 3.  - 7.   

 b  = 

   - 1.    2.    5.   

    9.    0.    5.   

-->a+b 

 ans  = 

    4.     9.    14.   

    10.  - 3.  - 2.    

-->a-b 

 ans  = 

     6.    5.    4.    

   - 8.  - 3.  - 12.   

Vector product (*) 

We shall describe two ways in which a meaning may be attributed to the product 

of two vectors. In both cases, the vectors concerned must have the same length. The first 

product is the standard scalar product. Suppose that u and v are two  vectors of length 

n, 𝑢 being a row vector and 𝑣 a column vector: 
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𝑢 = ,𝑢1, 𝑢2 , . . . . . , 𝑢𝑛 - ,         𝑣 =

 
 
 
 
 
𝑣1

𝑣2

.

.
𝑣𝑛  

 
 
 
 

 

The scalar product is defined by multiplying the corresponding elements together and 

adding the results to give a single number (scalar). 

𝑢 ∗ 𝑣 =  𝑢𝑖𝑣𝑖

𝑛

𝑖=1

 

We can perform this product in Scilab by 

--> u = [10, -11, 12], v = [20; -21; -22] 

u = 

    10.   -11.    12. 

v = 

    20. 

   -21. 

   -22. 

--> prod=u*v   // row times column vector 

prod =  

    167 

 

Suppose we also define a row vector w and a column vector z by 

--> w=[2,1,3], z=[7;6;5] 

w = 

     2.     1.     3. 

z = 

     7. 

     6. 

     5. 

and we wish to form the scalar products of u with w and v with z. 

-->u*w 
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    !--error 10  

Inconsistent multiplication. 

An error results because w is not a column vector. Recall from earlier that 

transposing (with ') turns column vectors into row vectors and vice versa. So, to form 

the scalar product of two row vectors or two column vectors, 

--> u*w.'  // u and w are row vectors 

ans =  

45 

--> u*u.'  // u is a row vector 

ans =  

365 

--> v.'*z  // v and z are column vectors 

ans =  

-96 

We shall refer to the Euclidean length of a vector as the norm of a vector; it is denoted 

by the symbol  .   and defined by 

 𝑢 =   𝑢𝑖
2

𝑛

𝑖=1

 

where 𝑛 is its dimension. This can be computed in Scilab in one of two ways examplified 

below: 

--> [sqrt(u*u.'),norm(u)] 

ans =  

    19.104973    19.104973   

where norm is a built in Scilab function that accepts a vector 𝑢 as input and delivers a 

scalar  𝑢  as the output. 

Element-wise product or dot product (.*) 

The second way of forming the product of two vectors of the same length is 

known as the Hadamard product. It is not often used in Mathematics but is an invaluable 

Scilab feature. It involves vectors of the same type. If u and v are two vectors of the same 

type (both row vectors or both column vectors), the mathematical definition of this 

product, which we shall call the dot product, is the vector having the components 

𝑢. 𝑣 = ,𝑢1𝑣1 , 𝑢2𝑣2  , . . . . . , 𝑢𝑛𝑣1- 
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The result is a vector of the same length and type as u and v. Thus, we simply multiply 

the corresponding elements of two vectors. In Scilab, the product is computed with the 

operator .* and, using the vectors w, z defined earlier 

--> w.*w 

ans = 

     4.     1.     9. 

>> w.*z' 

ans =  

     14.    6.     15. 

 

 

Element-wise division of vectors: right-division (./) and left-division (.\) 

There is no mathematical definition for the division of one vector by another. 

However, in Scilab, operators “./” and “.\” is defined to give element-wise division. It 

is therefore only defined for vectors of the same size and type. The right-division 

opertor “./” divides elements of pre-factor with corresponding elements of post-factor. 

Whereas, left-division opertor “.\” divides elements of post-factor with corresponding 

elements of pre-factor. That is, for vectors a and b of same shape and length, a./b gives 

the vector with entries a(i)/b(i) for each index i and a.\b gives the vector with 

entries b(i)/a(i) for each index i. 

--> a = 1:5, b=6:10, a./b, a.\b 

a = 

     1.     2.     3.     4.     5. 

b = 

     6.     7.     8.     9.    10. 

ans = 

    0.1666667    0.2857143    0.375    0.4444444    0.5 

ans  = 

    6.    3.5    2.6666667    2.25    2.   

--> a./a 

ans = 

     1.     1.     1.     1.     1. 

 

--> c = -2:2, a./b 

c = 

    -2.    -1.     0.     1.     2. 

ans = 

       0.1666667    0.2857143    0.375    0.4444444   0.5 
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Remark: The importance of these operations will be highlighted during their discussion  

on two dimensional matrices as same operations are applicable there also. 

Element-wise power of vectors (.^) 

To square each of the elements of a vector we could, for example, do u.*u. 

However, a neater way is to use the .^ operator is demonstrated below. 

--> u 

u =  

   10.    -11.    12. 

--> u.^2 

ans =  

  100.    121.   144. 

--> u.*u 

ans =  

  100.    121.   144. 

--> u.*w.^(-2) 

ans =  

  2.5     -11.     1. 3333333 

Observe that powers (.^ in this case) are done first, before any other arithmetic 

operation. 

 

2.1.2 The Colon Operator 

Colon operator in Scilab enables to create a row vector having integers entries in 

an arithmetic progression.  

1. The most basic syntax of the colon operator is: 

v = i : j 

where i is the starting index and j is the ending index, with i ≤ j. This creates a row 

vector 

v = (i, i+1, . . . , j). 

The following Scilab session demonstrates the use of colon operator  

-->3:7 

ans  = 

     3.    4.    5.    6.    7.   

2.  The complete syntax allows configuring the increment used when generating the 

index values, i.e., the step. The complete syntax for the colon operator is 

v = i : s : j 
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where i is the starting index, j is the ending index and s is the step. This command 

creates the vector v = (i, i+s, i+2s, . . . , i+ns) where n is the 

greatest integer such that i + ns ≤ j, if  s ≥ 0 and i ≤ j. 

Observation:  

(a) If s divides j - i, then the last index in the vector of index values is j, because 

in that case i + ns = j.  

(b) In other cases, we have i + ns < j.  

While, in most situations the step s is positive, it can be negative also. Following 

Scilab session demonstrates all the cases discussed here.  

-->v = 4 : 2 : 10 

 v  = 

     4.    6.    8.    10.   

 -->v = 3 : 2 : 10 

 v  = 

     3.    5.    7.    9.   

 -->v = 10 : -2 : 4 

 v  = 

     10.    8.    6.    4.   

 -->v = 10 : -2 : 3 

 v  = 

     10.    8.    6.    4.   

 

 

2.1.3 Creating linearly spaced vector: linspace function 

Scilab has an in-built function linspace for creating a linearly spaced vector 

with any specified values between two real or complex numbers. The syntax for calling 

this function is  

[v] = linspace(x1, x2, n) . 

Here,  x1 and x2 are real or complex scalars or column vectors, and 

n is a natural number whose value should be greater than or equal to 2. 
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For example: 

-->eye(2, 2) 

-->linspace(1,2,5) 

 ans  = 

     1.    1.25    1.5    1.75    2.   

-->linspace(1+%i,2+2*%i,5) 

 ans  = 

     1. + i   1.25 + 1.25i  1.5 + 1.5i  1.75 + 1.75i  2. + 2.i 

-->linspace([1:4]',[5:8]',5) 

 ans  = 

    1.    2.    3.    4.    5.   

    2.    3.    4.    5.    6.   

    3.    4.    5.    6.    7.   

    4.    5.    6.    7.    8.   

 

 

2.2 Two-dimensional matrices 

2.2.1 Creating Matrices 

There is a simple and efficient syntax to create a matrix with given values. The 

following is the list of symbols used to define a matrix: 

  square brackets "[" and "]"mark the beginning and the end of the matrix, 

  commas "," or spaces separate the values on different columns, 

  semicolons ";" separate the values of different rows. 

The following syntax can be used to define a matrix, where blank spaces are 

optional (but make the line easier to read) and "..." are designing intermediate values: 

A = [a11, a12, ... , a1n; a21, a22, ... , a2n; ...; an1, an2, 

... , ann] 

For example, either of the statements 

--> A = [1 2 3; 4 5 6; 7 8 9] 
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and 

--> A = [1 2 3 

--> 4 5 6 

--> 7 8 9] 

create the same matrix and assign it to the variable A. Scilab responds to this 

command by storing in the following matrix against the variable name A and displaying 

the same in Console. 

A = 

     1     2     3 

     4     5     6 

     7     8     9 

Scilab always prints out the variable in the executed line (which can be very 

awkward and time consuming for large arrays) unless you end the line with a semicolan 

(;). It is good practice to use the semicolan at the end of the line. You can always ask 

Scilab to print the matrix later also by calling the variable name, as shown below. 

--> A 

A = 

     1     2     3 

     4     5     6 

     7     8     9 

 

2.2.2 Some Special Matrices through in-built functions 

The built-in functions rand, eye, and ones, for example, provide an easy way to 

create matrices with which to experiment.  

Identity matrix 

The command eye(n, n) creates the identity matrix of order n × n. For 

example: 

-->eye(2, 2) 

 ans  = 

    1.    0.   

    0.    1.   

Remark: For the case of 𝑚 ≠ 𝑛, the Scilab command eye(m, n)creates a rectangular 

matrix with m rows and n columns with the identity matrix of order  = min*𝑚, 𝑛+ and 

additional rows or columns as zeros. For example: 
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-->eye(2, 3) 

 ans  = 

    1.    0.    0.   

    0.    1.    0.   

-->eye(3, 2) 

 ans  = 

    1.    0.   

    0.    1.   

    0.    0.   

Matrix with all entries one 

The command ones(m, n) creates the identity matrix of order m × n. For 

example: 

-->ones(2, 3) 

ans  = 

    1.    1.    1.   

    1.    1.    1.   

Matrix with all entries zero 

The command zeros(m, n) creates the identity matrix of order m × n. For 

example: 

-->zeros(2, 3) 

ans  = 

    1.    1.    1.   

    1.    1.    1.   

Random matrix 

The command rand(m, n) will create a matrix of order m × n with randomly 

generated entries distributed uniformly between 0 and 1 

--> rand(5, 5) 

ans = 
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    0.8147    0.0975    0.1576    0.1419    0.6557 

    0.9058    0.2785    0.9706    0.4218    0.0357 

    0.1270    0.5469    0.9572    0.9157    0.8491 

    0.9134    0.9575    0.4854    0.7922    0.9340 

    0.6324    0.9649    0.8003    0.9595    0.6787 

while rand(m,n) will create an m × n array. 

--> rand(3,4) 

ans = 

    0.7577    0.6555    0.0318    0.0971 

    0.7431    0.1712    0.2769    0.8235 

    0.3922    0.7060    0.0462    0.6948 

 

2.2.3 Operations on matrices 

Scilab provides operations on matrices of same size viz. addition (+), subtraction 

(-), element-wise multiplication or dot product (.*), element-wise right-division (./), and 

element-wise right-division (.\). Also the multiplication on any two matrices of 

comparable order is performed in Scilab using the multiplication operator (*). Herein, 

Scilab considers row and column vectors as row and column matrices. All these matrix 

operations are discussed below. Two more operators namely, right-division (/) and left-

division (\) are also available in Scilab and are discussed later in this section. 

Addition (+) and subtraction (-) of matrices 

The addition and subtraction work element-wise, just as for vectors: 

corresponding elements are added together. 

-->a = [5 7 9; 1 -3 -7], b=[-1 2 5; 9 0 5] 

 a  = 

    5.    7.    9.   

    1.  - 3.  - 7.   

 b  = 

   - 1.    2.    5.   

    9.    0.    5.   

-->a+b 

 ans  = 
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    4.     9.    14.   

    10.  - 3.  - 2.    

-->a-b 

 ans  = 

     6.    5.    4.    

   - 8.  - 3.  - 12.   

Dot product of matrices (.*) 

The dot product works as for vectors: corresponding elements are multiplied 

together - so the matrices involved must have the same size. 

--> a = [5 7 9; 1 -3 -7], b=[-1 2 5; 9 0 5] 

a = 

     5     7     9 

     1    -3    -7 

b = 

    -1     2     5 

     9     0     5 

--> a.*b 

ans = 

    -5    14    45 

     9     0   -35 

--> c=[0 1;3 -2;4 2] 

c = 

     0     1 

     3    -2 

     4     2 

-->a.*c 

     !--error 9999  

Inconsistent element-wise operation 

-->a.*c' 

ans = 

     0    21    36 

     1     6   -14 

Product of matrices 

To form the product of an m × n matrix A and a n × p matrix B, written as AB, we 

visualize the first matrix (A) as being composed of m row vectors of length n stacked on 
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top of each other while the second (B) is visualized as being made up of p column 

vectors of length n. The entry in the ith row and jth column of the product is then the 

scalar-product of the ith row of A with the jth column of B. The product is an m × p 

matrix.  

Check that you understand what is meant by this definition by taking through the 

following examples. 

--> a=[5 7 9;1 -3 -7],b=[0 1;3 -2;4 2] 

a = 

     5     7     9 

     1    -3    -7 

b = 

     0     1 

     3    -2 

     4     2 

--> c=a*b 

c = 

    57     9 

   -37    -7 

--> d=b*a 

d = 

     1    -3    -7 

    13    27    41 

    22    22    22 

--> e=b'*a' 

e = 

    57   -37 

     9    -7 

We see that e = c’ suggesting that (a * b)' = b' * a' Why is b * a a 3 × 3 matrix while a * b is 

2 × 2? 

Remark: (Matrix-vector are vector-matrix product) As vectors are row or column 

matrices, therefore the product of a matrix with a vector with appropriate order is 

covered in this definition of the product operations of matrices in Scilab. 

Left-division (\) of matrices 

If A is a square matrix and A and B are matrices of comparable order for 

multiplication, then the left-division operator (\) works for A\B to give the result 

inv(A)*B. For example: 
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-->A = [1, 2; 3, 4] 

 A  = 

    1.    2.   

    3.    4.   

-->B = [2, 5, 4; 5, 6, 7] 

 B  = 

    2.    5.    4.   

    5.    6.    7.   

-->A\B 

 ans  = 

    1.   - 4.   - 1.    

    0.5    4.5    2.5   

 -->inv(A)*B 

 ans  = 

    1.   - 4.   - 1.    

    0.5    4.5    2.5   

This operator can be used to solve for 𝑥 the matrix equation2  

     𝐴𝑥 = 𝑏. 

For example: For the system of equations  

 𝑥1 + 2𝑥2 = 3 

3𝑥1 + 4𝑥2 = 7 

the matrix form is 𝐴𝑥 = 𝑏, where 𝐴 =  
1 2
3 4

 , 𝑥 =  
𝑥1

𝑥2
 , and 𝑏 =  

3
7
 .  

As determinant of 𝐴 is -2, which is non-zero, therefore the matrix 𝐴 is invertible. Hence, 

the solution of this system of equations can be obtained as 𝑥 = 𝐴−1𝑏. This is can be 

solved through the following Scilab session. 

                                                           
2 Solving the system of equations will be discussed again in detail in a later chapter and there this 
operator would be utilized as a part of the complete discussion. 
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-->A 

 A  = 

    1.    2.   

    3.    4.   

-->b = [3; 7] 

 b  = 

    3.   

    7. 

-->x = A\b 

 x  = 

    1.   

    1.   

Alternatively, the same can be achieved by using the in-built Scilab function inv for 

inverse of a matrix. 

-->x = inv(A)*b 

 x  = 

    1.   

    1.   

Right-division (/) of matrices 

If B is a square matrix and A and B are matrices of comparable order for 

multiplication, then the right-division operator (/) works for A/B to give the result 

A*inv(B). For example: 

-->C = [2, 3; 4, 5; 6, 7] 

 C  = 

    2.    3.   

    4.    5.   

    6.    7.   

-->D = [1, 2; 3, 4] 
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 D  = 

    1.    2.   

    3.    4.   

-->C/D 

 ans  = 

    0.5    0.5   

  - 0.5    1.5   

  - 1.5    2.5   

-->C*inv(D) 

 ans  = 

    0.5    0.5   

  - 0.5    1.5   

  - 1.5    2.5   

Transpose of a matrix 

Just like on vectors, the transpose of a matrix is obtained by the command (.‟) 

and the transpose conjugate of a matrix is obtained by the command (‟). For example: 

-->A 

 A  = 

    1.    2.    3.   

    4.    5.    6.   

-->A' 

 ans  = 

    1.    4.   

    2.    5.   

    3.    6.   

-->A.' 

 ans  = 

    1.    4.   

    2.    5.   
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    3.    6.   

-->B = [1 + 2 * %i, 2 + 3 * %i; %i, -%i] 

 B  = 

    1. + 2.i    2. + 3.i   

    i         - i          

-->B.' 

 ans  = 

    1. + 2.i    i     

    2. + 3.i  - i     

-->B' 

 ans  = 

    1. - 2.i  - i     

    2. - 3.i    i     

 

Query Matrices 

We can get the size (or order or dimensions) of a matrix with the command 

size. The size function returns the two output arguments nr and nc, which are the 

number of rows and the number of columns. 

-->A = ones(2 ,3) 

A = 

    1.    1.    1.   

    1.    1.    1.   

-->[nr ,nc ]= size (A) 

nc  = 

    3.   

 nr  = 

    2.   

The size function has also the following syntax  

nr = size(A ,sel) 

which allows to get only the number of rows or the number of columns and where sel 

can have the following values 
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 sel=1 or sel="r", returns the number of rows, 

 sel=2 or sel="c", returns the number of columns. 

 sel="*", returns the total number of elements, that is, the number of columns 

times the number of rows. 

In the following session, we use the size function in order to compute the total number 

of elements of a matrix. 

-->A = ones(2 ,3) 

 A  = 

    1.    1.    1.   

    1.    1.    1.   

-->size (A,"*") 

 ans  = 

    6.   

 

Accessing the elements of a matrix 

There are multiple ways of accessing matrices, completely or in part. 

Method 1: Calling the whole matrix 

For a matrix which is already defined and assigned to the variable A, the whole matrix 

can be assessed by calling the same by its variable name. For exampe, 

-->A = ones (2 ,3); 

-->A 

 A  = 

    1.    1.    1.   

    1.    1.    1.   

Method 2: Calling an element of a matrix 

For a matrix which is already defined and assigned to the variable A, the element in row 

number i and column number j of the matrix A can be assessed by calling it through 

the syntax A(i, j). For exampe, 

-->B = [1, 2, 3; 4, 5, 6] 

 B  = 

    1.    2.    3.   

    4.    5.    6.   

-->B(2, 3) 
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 ans  = 

    6.   

-->B(1, 3) 

 ans  = 

    3.   

-->B(1, 2) 

 ans  = 

    2.   

Method 3: Accessing a submatrix of a matrix 

For a matrix which is already defined and assigned to the variable A, its submatrix can 

be accessed by specifying the indices for row numbers and column numbers as row-

vectors. For the vector of row indices is defined as u and vetcor for column indices is v, 

the submatrix of matrix A can be assessed by calling it through the syntax A(u, v). For 

exampe, for a matrix B (defined below), the submatrix of with entries of 2nd and 4th row 

which lie in 1st and 4th coulmn can be accessed by the commands demonstrated in the 

following Scilab session. 

-->B = [1, 2, 3, 4, 5; 6, 7, 8, 9, 10; 11, 12, 13, 14, 15; .. 

16, 17, 18, 19, 20] 

B  = 

    1.     2.     3.     4.     5.    

    6.     7.     8.     9.     10.   

    11.    12.    13.    14.    15.   

    16.    17.    18.    19.    20.   

-->u = [2, 4], v = [1, 4] 

 u  = 

    2.    4.   

 v  = 

    1.    4.   

-->B(u, v) 

 ans  = 

    6.     9.    

    16.    19.   
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Remarks:  

1. Colon operator can also be used for defining the above discussed vector of indices. 

For example, the submatrix of the above mentioned matrix B with entries from the 

first three rows which lie in 1st, 3rd and 5th column can be accessed by following the 

following Scilab command.  

-->B(1:3, 1:2:5) 

 ans  = 

    1.     3.     5.    

    6.     8.     10.   

    11.    13.    15.   

 

2. Complete rows or columns can be accessed by appropriately using the colon 

operator in place of index vector. Particularly,  

a. The complete ith row of a matrix A can be accessed by the command A(i, :). 

For example, for the matrix B mentioned above, complete 3rd row can be 

accessed through the command  

-->B(3, :) 

 ans  = 

     11.    12.    13.    14.    15.   

b. The complete jth column of matrix A can be accessed by the command A(:, j). 

For example, for the matrix B mentioned above, complete 2nd column can be 

accessed through the command  

-->B(:, 2) 

 ans  = 

    2.    

    7.    

    12.   

    17.   

3. The order in which indices are placed in the index vector u or v for accessing rows 

and columns, corresponding rows of the submatrix are arranged in the output 

obtained through the command A(u, v). For example, for the matrix B mentioned 

above, observe the output obtained through the following command 

-->u = [2, 1]; 

-->B(u, :) 

 ans  = 

    6.    7.    8.    9.    10.   

    1.    2.    3.    4.    5.    

The command B(u, :) gives the complete 1st and 2nd rows but in reverse order, as 

the vector u depicts the row indices 2 first and 1 second. 
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The dollor operator ($) for counting indices to assess matrices 

The dollor operator ($) enables to refer to the last row index or last column 

index of a matrix without manually finding those. For example, if A is a matrix of order 

𝑚 × 𝑛, then for referring to the elements of matrix A while counting the indices in 

decending order starting from the last one, can be done through the following 

commands.  

Command Description 

A(i, $) the element of matrix A in row i and the last column (i.e., column n) 

A($, j) the element of matrix A in the last row (i.e., row m) and column i 

A($-i, j) the element of matrix A in the row (m - i) and the column j 

A(i, $-j) the element of matrix A in the row i and the column (n - j) 

A($-i, $-j) the element of matrix A in the row (m - i) and the column (n - j) 

 

These commands are illustrated below through the following Scilab session. 

-->A = [1, 2, 3; 4, 5, 6] 

 A  = 

    1.    2.    3.   

    4.    5.    6.   

-->A(2, $) 

 ans  = 

    6.   

-->A($, 1) 

 ans  = 

    4.   

-->A($, $) 

 ans  = 

    6.   

-->A($-1, $-2) 

 ans  = 

     1.   
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2.2.4 Functions on matrices 

There are some useful in-built functions available in Scilab which enable 

obtaining some important informations about matrices. Some of these are detailed in 

the table given below.3 

 

Function Syntax Description 

det det(A) gives the determinant of a matrix A  

inv inv(A) gives the inverse of a matrix A 

linsolve x=linsolve(A, b) solves the system of linear equations Ax+b=0 

trace a=trace(A) gives the trace (sum of diagonal entries) of a 

matrix A 

spec [R,diagevals] 

=spec(B) 

or  

evals = spec(B) 

R = square matrix of eigenvectors (specifically, 

the right-eigenvectors)  

diagevals = gives a diagonal matrix with 

entries the eigenvalues of matrix A 

evals = column vector comprising of 

eigenvalues of matrix A 

 

First four functions on matrices introduced in the table given above are self 

explanatory, whereas the spec function requires little elaboration through practical 

demonstrations through a Scilab session as given below. For this demonstration we 

have take simple most examples of matrices whose eigenvalues and eigenvectors can be 

identified at the first look due to known properties of linear algebra. 

 

-->A = eye(2, 2) 

 A  = 

    1.    0.   

    0.    1.   

                                                           
3 Here only some of the in-built functions have been listed. Interested readers may refer to the help 
document of Scilab for exploring more in-built functions available in Scilab. 
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-->[R,diagevals] =spec(A) 

 diagevals  = 

    1.    0.   

    0.    1.   

 R  = 

    1.    0.   

    0.    1.   

 

// If we call the spec function without specifying any output 

// arguments or by specifying only one output argument, then 

// only eigenvalues are returned by the call of function in  

// the form of a column vector. 

-->spec(A) 

 ans  = 

    1.   

    1.   

-->evals = spec(A) 

 evals  = 

    1.   

    1.   

-->B = [2, 0; 0, 3] 

 B  = 

    2.    0.   

    0.    3.   

-->spec(B) 

 ans  = 

    2.   

    3.   
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-->[R,diagevals] =spec(B) 

 diagevals  = 

    2.    0.   

    0.    3.   

 R  = 

    1.    0.   

    0.    1.   

-->B = [2, 0, 0; 0, 2, 0; 0, 0, 3] 

 B  = 

    2.    0.    0.   

    0.    2.    0.   

    0.    0.    3.   

-->[R,diagevals] =spec(B) 

 diagevals  = 

    2.    0.    0.   

    0.    2.    0.   

    0.    0.    3.   

 R  = 

    1.    0.    0.   

    0.    1.    0.   

    0.    0.    1.   

The discussion on matrices is vast and it is impossible to list its all features and 

ways to deal them in Scilab. The demonstrations made in this chapter are sufficient to 

explain the fundamentals for all the basic dealings of matrices. This makes it 

appropriate to conclude this chapter here to the scope of this book. For advanced topics, 

readers are suggested to refer to the help document of Scilab. 
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Exercise 2 

1. Perform following tasks: 

(a) Create an identity matrix of a pre-specified order. 

(b) Create a matrix of a pre-specified order with all entries ones. 

(c) Create a matrix of a pre-specified order with all entries zeros. 

(d) Use the function ‘linspace’ to create a vector with initial value 0, final value 10 and 

number of values in the vector as 5. 

(e) Use the function ‘rand’ and ‘grand’ for creating matrices. 

(f) Use the function ‘testmatrix’ for defining a matrix. 

(g) Create the following matrix in Scilab. 

 
12 14 11 2
−2 3 16 19 + 2i
21 3 6 8

  

2. Use the function size with its various calling sequences, to obtain the shape of the 

matrix. 

3. Write a code to (1) create a matrix with 3 rows and 4 columns and (2) add the entries of 

first column of the matrix. 

4. Use colon operator to create  

(a) a vector of integers with starting value -5 and ending value 3. 

(b) a vector with all odd integers with starting value 5 and ending value -5. 

5. Use the dollar operator to access the entry in 3rd row and 4th column of a matrix with 

order 4 x 5. 

6. Use lower level operations for addition, subtraction, multiplication, right division, left 

division, power, and transpose-conjugate of matrices. 

7. Use element-wise operations for element-wise addition, subtraction, multiplication, 

right division, left division, power of matrices. Obtain transpose (but not conjugate) of a 

matrix. 
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Chapter 3: Scilab Programming 

 

Scilab is a software which enables the users to work more freely for utilizing its 

available computing functionalities by developing their own programs for any method 

or algorithm. Scilab has its own programming syntax for various statements which are 

required for any programming language. Among foremost fundamental statements of 

such a programming language are branching statements and looping statements. In this 

chapter the syntax and use these statements are discussed in the context of Scilab as a 

programming language. 

 

3.1 Branching statements 

Branching statements are used to enable a program for handling the decision 

making situations while they are run with practical inputs. These statements are 

categorized depending upon the type of decisions to be taken. Such basic statements are 

described below one by one. 

The if statement 

This statement allows executing desirable sequence of actions depending on if a 

certain logical condition gets satisfied. The syntax for this statement is 

if (logical test) then 

Scilab Command 1 

Scilab Command 2 

... 

end 

The syntax of “if statement” in Scilab as given above, first evaluates the 

condition given through the expression “logical test”. If the output of this 

evaluation comes out with Boolean value “True”, then the Scilab commands written 

between the keywords then and end are executed sequentially. Whereas, for the case, 

when the output of this evaluation is comes out with Boolean value “False”, then 

nothing is executed. 

Let us understand this concept through a small program coded in Scilab editor 

“SciNotes”.  
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Example 3.1: The following program having an “if statement” tests whether a given 

real number is equal to zero, and then displays an appropriate message only for the case 

when output of the logical test is “True” (i.e., when the number is equal to zero). 

clear 

r = input("Enter a real number ") 

if (r == 0) then 

    disp("The given number is equal to zero.") 

end 

The output of the above program upon execution is demonstrated below for two 

different inputs. 

Output: 

-->exec('D:\SCILAB\Ch3_1_Ex1_if_Statement.sce', -1) 

Enter a real number 0 

  The given number is equal to zero. 

-->exec('D:\SCILAB\Ch3_1_Ex1_if_Statement.sce', -1) 

Enter a real number 2 

--> 

It is to be noted here that in case of first execution of the program, as the input is 

number zero, therefore a message is displayed due to the logical test (r == 0) having 

truth value “True”. Whereas, when in second execution of the program a non-zero 

number is input, nothing appears as a message, because there is no command to be 

executed if the logical test gives truth value “False”. 

Let us consider a situation when it is required to execute certain sequence of 

commands for one outcome of the logical test whereas another sequence of commands 

to be executed for another outcome. Then it is appropriate to use another branching 

statement, as detailed below.  

The if-else statement 

This statement allows executing exactly one out of two desirable sequences of 

actions depending on if a certain logical condition gets satisfied or not. The syntax for 

this statement is 

if (logical test) then 

Scilab Command A1 

Scilab Command A2 

... 

else 
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Scilab Command B1 

Scilab Command B2 

... 

end 

The syntax of “if-else statement” in Scilab as given above, first evaluates the 

condition given through the expression “logical test”. If the output of this 

evaluation comes out with Boolean value “True”, then the Scilab commands Scilab 

Command A1... written between the keywords then and else are executed 

sequentially. Whereas, for the case, when the output of this evaluation is comes out with 

Boolean value “False”, then the Scilab commands Scilab Command B1... written 

between the keywords else and end are executed sequentially. 

Let us understand this concept through another small program coded in Scilab 

editor “SciNotes”.  

Example 3.2: The following program having an “if-else statement” tests whether a 

given real number is equal to zero. It then displays a message for the case when output 

of the logical test is “True” (i.e., when the number is equal to zero), whereas, in case of 

output of the logical test “False”, displays another message. 

clear 

r = input("Enter a real number ") 

if (r == 0) then 

    disp("The given number is equal to zero.") 

else 

    disp("The given number is not equal to zero.") 

end 

The output of the above program upon execution is demonstrated below for two 

different inputs. 

Output: 

-->exec('D:\SCILAB\Ch3_1_Ex2_if_else_Statement.sce', -1) 

Enter a real number 0.001 

  The given number is not equal to zero. 

-->exec('D:\SCILAB\Ch3_1_Ex2_if_else_Statement.sce', -1) 

Enter a real number 0 

  The given number is equal to zero. 

--> 
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It is to be noted here that different messages are displayed in both the executions 

of the program, depending upon the truth value of the logical test (r == 0) as “True” 

or “False”. 

A branching statement with multiple logical tests can also be used sequentially 

for execution of different sequences of commands for different outcomes of logical tests. 

Such a statement is explained below. 

The if-elseif-else statement 

This statement allows multi-stage testing for execution of exactly one sequence 

of actions, among many, depending on which combination of logical conditions gets 

satisfied or dissatisfied. A basic syntax for this statement is 

if (logical test 1) then 

Scilab Command A1 

Scilab Command A2 

... 

elseif (logical test 2) then 

Scilab Command B1 

Scilab Command B2 

... 

else 

Scilab Command C1 

Scilab Command C2 

... 

end 

The syntax of “if-elseif-else statement” in Scilab as given above, first 

evaluates the condition given through the expression “logical test 1”. If the 

output of this evaluation comes out with Boolean value “True”, then the Scilab 

commands Scilab Command A1... written between the keywords then and 

elseif are executed sequentially. Whereas, for the case, when the output of this first 

evaluation is comes out with Boolean value “False”, then further the expression 

“logical test 2” is evaluated. If the output of this second evaluation comes out 

with Boolean value “True”, then the Scilab commands Scilab Command B1... 

written between the keywords elseif and else are executed sequentially. Whereas, 

for the case, when the output of this second evaluation is comes out with Boolean value 

“False”, then the Scilab commands Scilab Command C1... written between the 

keywords else and end are executed sequentially. 

Let us understand this concept through a small program coded in Scilab editor 

“SciNotes”.  



Programming using SCILAB                       Page 48 
 

Example 3.3: The following program having an “if-elseif-else statement” tests 

whether a given real number is zero, positive, or negative. 

clear 

r = input("Enter a real number ") 

if (r == 0) then 

    disp("The given number is equal to zero.") 

elseif (r > 0) then 

    disp("The given number is positive.") 

else 

    disp("The given number is negative.") 

end 

The output of the above program upon execution is demonstrated below for three 

different inputs. 

Output: 

-->exec('D:\SCILAB\ Ch3_1_Ex3_if_elseif_else_Statement.sce', -

1) 

Enter a real number 2 

The given number is positive.    

-->exec('D:\SCILAB\ Ch3_1_Ex3_if_elseif_else_Statement.sce', -

1) 

Enter a real number -5 

The given number is negative. 

-->exec('D:\SCILAB\ Ch3_1_Ex3_if_elseif_else_Statement.sce', -

1) 

Enter a real number 0 

The given number is equal to zero. 

--> 

It is to be noted here that different messages are displayed in each of the 

executions of the program, depending upon the truth value of the logical test (r == 0) 

and further of the logical test (r > 0). 

A branching statement with multiple logical tests can also be used sequentially 

for execution of different sequences of commands for different outcomes of logical tests. 

Such a statement is explained below. 

The select statement 

The select statement allows combining multi-stage testing several branches in a 

clear and simple way. 
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select n 

case i1 then 

Scilab Command A1 

Scilab Command A2 

... 

case i2 then 

Scilab Command B1 

Scilab Command B2 

... 

... 

else 

Scilab Command C1 

Scilab Command C2 

... 

end 

The syntax of “select statement” in Scilab as given above, takes the value n and 

keeps matching with evaluations i1 , i2, … and implements the sequence of commands 

exactly for that case whose evaluation matches the value n.  Otherwise, the Scilab 

commands written between the keywords else and end are executed sequentially. 

Let us understand this concept through a small program coded in Scilab editor 

“SciNotes”. 

Example 3.4: The following program uses the “select statement” to check multiple 

test condition and executes the Scilab commands accordingly. 

clear 

r = input("Enter the Roll Number ") 

select r 

case 1 then 

    disp("Your Roll Number is 1.") 

case 2 then 

    disp("Your Roll Number is 2.") 

else 

    disp("Entered Roll Number is not in the list.") 

end 

 

The output of the above program upon execution is demonstrated below with two 

different inputs. 

Output: 

-->exec('D:\SCILAB\Ch3_1_Ex4_select_Statement.sce', -1) 

Enter the Roll Number 1 

 Your Roll Number is 1.    
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-->exec('D:\SCILAB\Ch3_1_Ex3_ select_Statement.sce', -1) 

Enter the Roll Number 5 

 Entered Roll Number is not in the list.   

--> 

 

 

Exercise 3.1 

1. Write a Scilab program to test whether a given number divides the other given number. 

2. Write a Scilab program to test whether a given number is even or odd. 

3. Write a Scilab program to test whether a given number is purely real number or a 

complex number. 

4. Write a Scilab program to test whether a given number is positive, negative, or zero. 

5. Write a Scilab program to test whether a given number is positive, negative, or zero, 

using select statement. 

6. Write a Scilab program to solve a Quadratic Equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. The 

input to the function are the values “𝑎, 𝑏, 𝑐” and the output of the function should 

be in the variable names “𝑝, 𝑞” appropriately declared. 
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3.2 Looping statements 

Looping statements are used to enable a program to repeat a sequence of 

commands for a finite number of times. There are two types of such statements 

available in Scilab. These are appropriately used depending on the situation that 

whether the termination of the loop is known exactly through the number of repetitions 

of commands or expressed in terms of some logical test condition.  

3.2.1 The for statement 

This statement allows executing desirable sequence of actions depending on if a 

certain logical condition gets satisfied. For any variable name i and a vector of values v, 

the syntax of the “for statement” is given below. 

for i = v  

Scilab Command 1 

Scilab Command 2 

... 

end 

Syntax of the “for statement” in Scilab as given above, indicates that the 

sequence of Scilab commands will be executed repeatedly sequentially for each value of 

the vector v assigned to the variable i. Let us learn this concept through some 

examples. 

Example 3.5: The following program computes the sum of first 5 natural numbers. 

Sum = 0 

for i=1:5 

    Sum = Sum + i 

end 

disp("Final Sum") 

disp(Sum)  

In the above program coded in SciNotes, the variable i takes repeatedly and 

sequentially values from the vector 1:5 and corresponding to each value taken by the 

variable i, it is added to the variable Sum. Each time in the loop, the value of i is added 

to the variable Sum, the variable Sum gets value of the partial sum to finally get the 

desired value at the termination of the loop after variable i completing the commands 

for value i=5. The output of this program is as following. 

-->exec('D:\SCILAB\Ch3_2_Ex5_for_loop.sce', -1) 

Final Sum    

    15.   
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In the Example 3.4 discussed above, the basic colon operator is used. General 

colon operator with specific step length can also be used in “for loop”, as demonstrated 

in the next example. 

Example 3.6: The following program demonstrates the sum of odd natural numbers 

from 1 to 10. 

Sum = 0 

for i=1:2:10 

    Sum = Sum + i 

end 

disp("Sum of odd natural numbers between 1 and 10") 

disp(Sum)  

In the above program coded in SciNotes, the variable i takes repeatedly and 

sequentially values from the vector 1:2:10 (i.e., odd numbers between 1 and 10) and 

corresponding to each value taken by the variable i, it is added to the variable Sum. The 

output of this program in terms of the final value of variable Sum gives the desired 

results, which is depicted as following. 

-->exec('D:\SCILAB\Ch3_2_Ex6_for_loop.sce', -1) 

Sum of odd natural numbers between 1 and 10    

    25.   

In the Examples 3.4 and 3.5 discussed above, the colon operators are used 

appropriately to define vectors. Even, any vector of values can in general be used in 

“for loop”, as demonstrated in the next example. 

Example 3.7: The following program demonstrates the sum of values of a pre-defined 

vector. 

Sum = 0 

v = [1, 9, %e, 5] 

for i=v 

    Sum = Sum + i 

end 

disp("Sum of values in the vector v:") 

disp(Sum) 

In the above program coded in SciNotes, the variable i takes repeatedly and 

sequentially values from the vector v and corresponding to each value taken by the 

variable i, it is added to the variable Sum. The output of this program in terms of the 

final value of variable Sum gives the desired results, which is depicted as following. 

-->exec('D:\SCILAB\Ch3_2_Ex7_for_loop.sce', -1) 
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Sum of values in the vector v:    

     17.718282   

 

Exercise 3.2 

1. Write a Scilab program to compute sum of first ‘n’ natural numbers. 

2. Write a Scilab program to compute factorial of a natural number ‘n’. 

3. Write a Scilab program to obtain the Fibonacci sequence with ‘n’ members, and 

Fibonacci series with ‘n’ terms. 

4. Write a Scilab program to test whether a given number is prime number or not. 

5. Write a Scilab program using for loop to compute the sum of two given matrices, if they 

are of comparable order. 

6. Write a Scilab program using for loop to compute the matrix multiplication of two 

given matrices, if they are of comparable order. Verify the obtained matrix by using 

Scilab matrix multiplication operator ‘*’.  

7. Write a Scilab program to sorting (arrange) a set of numbers in ascending and 

descending order. 

8. Write a Scilab program to compute the number of permutations & number of 

combinations for given values of ‘n’ and ‘r’. 

 

3.2.2 The while statement 

Some situations appropriate to looping statements are encountered some times 

during the programming where it the termination point for the loop cannot be 

identified in advance as an exact number, unlike the for loop. Rather, in such cases, the 

termination is identified through some criterion which is expressible as a logical test 

condition.  Such situations are appropriate to be programmed as a “while statement”.  

The general format of while statement is 

while (logical test) 

Scilab Command 1 

Scilab Command 2 

... 

end 

Let us learn use of while statement through the following example. 
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Example 3.8: The following program computes the sum of digits of a natural number. 

n=input("Enter a natural number: ") 

t=n 

Sum=0 

while (t~=0) 

    digit = pmodulo(t,10) 

    Sum=Sum+digit 

    t=int(t/10) 

end 

disp("The sum of digits of the number " + string(n) + " is "+ 

string(Sum)+".") 

 

The output upon the execution of this program is as following. 

-->exec('D:\SCILAB\Ch3_2_Ex8_while_loop.sce', -1) 

Enter a natural number: 145 

 The sum of digits of the number 145 is 10.   

 

 

Exercise 3.3 

1. Write a Scilab program to find the number of digits of a natural number ‘n’. 

2. Write a Scilab program to obtain a number with digits as the reverse of a given natural 

number ‘n’. 

3. Write a Scilab program to test whether a given number is Palindrome. 

4. Write a Scilab program to test whether a given number is Armstrong number. 

5. Write a Scilab program to obtain the binary equivalent of a given decimal number. 

6. Write a Scilab program to obtain the decimal equivalent of a given binary number. 

7. Write a Scilab program to compute sum of first ‘n’ prime numbers. 
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Chapter 4: Functions 

 

Functions in Scilab are programs developed to obtain mathematical outputs 

upon their execution. Due to their mathematical outputs, it becomes more appropriate 

to use function for further mathematical use computations. For example, if outputs of 

programs 4 and 5 of Exercise 3.3 are in the form of a string, then it is difficult to use 

these outputs for further processing of information drawn through their outputs. 

Rather, if the output of both the programs be obtained in terms of numbers or Boolean 

variables, then the further processing of outputs becomes convenient. To understand 

this, let us test whether a given number is a Palindrome and Armstrong too. If the 

output of both the programs are expressed in terms of numbers or Booleans instead of 

messages conveyed as strings, then their conclusions can further be treated through 

mathematical or logical operators. Knowing the usefulness of function programs, let us 

learn first about how to call a function and use its output(s). 

 

4.1 Calling a function 

There are three main components of call of a Scilab function, as listed below. 

 name of the function 

 input argument(s) 

 output argument(s). 

The calling sequence of any function in most general form is as following: 

[y1, ... ,yn] = function_name(x1, ... , xn)  

Remarks: In the calling sequence of a function, 

1. the function name is function_name; 

2. input arguments are x1, ... , xn; 

3. output arguments are y1, ... ,yn; 

4. if there are multiple input or output arguments, then they should to be separated 

by comma (,); 

5. input argument(s) are to be enclosed in parenthesis (generally called round 

brackets), i.e., “(”  and  “)”; 

6. input argument(s) are to be enclosed in square brackets (or simply called 

brackets), i.e., “[”  and  “]”; 

Caution: Any space should not be given after the function name and after the left 

parenthesis. 
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Built-in functions 

There are multiple built-in functions in Scilab. Some of them we have discussed 

in Section 1.4 of Chapter 1. Built-in functions are simply to be called for getting the 

values of their output arguments by simply entering their correct calling sequence.  

 

4.2 Defining a function 

Scilab has been developed so that it can be extended by the users. Users can 

develop their own programs as functions for better mathematical application. In this 

section, let us learn the procedure and syntax of coding a function program in Scilab. 

The coding of a function program is majorly like any general program except some 

typical differences, which are as following.  

1. The code of any function program has to start with the keyword function and 

end with the keyword endfunction. 

2. As function programs are intended to give mathematical outputs, so the 

desirable outputs are needed to be assigned to the variables written as output 

arguments. 

3. As function programs, once developed, are used for multiple values of inputs 

arguments, therefore whichever variables are used as inputs they should be 

included as input arguments. 

Syntax of a general function program code is as following: 

function [y1, ... ,yn] = function_name(x1, ... , xn) 

Scilab Command 1 

Scilab Command 2 

... 

y1 = assign value 

... 

yn = assign value 

endfunction 

Remarks:  

1. Space must be provided after output arguments and the assignment operator 

sign “=”. 

2. The name of the function must abide the rules of defining a valid variable name 

in Scilab. 

3. User defined function names should be avoided to be same as built-in function 

names. 
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4. All the output variables must be assigned values in the code of the function 

program. 

5. A used defined function program is required to be executed before being called 

for the first time. Execution is required again before calling the function program 

for every time when the code is edited. 

6. General Scilab programs are saved in the permanent memory of the computer 

with the file extension “.sce”. Whereas, the function programs in Scilab are saved 

with the file extension “.sci”. Over that, the file name of the program file must be 

same as the function name. 

Let us learn this through an example of a function program developed by modifying the 

program in Example 3.3 in Chapter 3. 

function [y]=signum(x) 

    if (x == 0) then 

        y = 0; 

    elseif (x > 0) then 

        y = 1; 

    else 

        y = -1; 

    end 

endfunction 

 

This function can be executed and then called for different inputs as demonstrated 

below. 

-->exec('D:\SCILAB\signum.sci', -1) 

-->[y] = signum(5) 

 y  = 

     1.   

-->[y] = signum(-10) 

 y  = 

   - 1.   

-->[y] = signum(0) 

 y  = 

     0.   
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Remark: Variable names used in input and output arguments are local to the function 

program. The interpretation of this concept demonstrated through the above-discussed 

function program is given below.4 

1. Although, x is the input variable for the above function program but it can be 

called using any other variable name also. For example, for the above function 

program: 

-->a = 5; 

-->[y] = signum(a) 

 y  = 

     1.   

This feature is due to a mechanism of Scilab explained as following. During the 

call of function program signum with variable a used as input argument, Scilab 

assigns the value of variable a to the local variable x and then computes the 

value of variable y pertaining to the output argument. 

2. Similarly, any variable name can be used as output variable during the call of a 

function program. For example, for the above function program: 

-->[b] = signum(a) 

 b  = 

     1.   

This feature is due to another mechanism of Scilab explained as following. 

During the call of function program signum with input argument assigned value 

directly or through variable, Scilab computes the value of variable y pertaining to 

the output argument. It then assigns the computed value of variable y to the 

variable b, because the call of the function program uses output argument as b.  

 

 

Exercise 4 

1. Write a Scilab program to solve a Quadratic Equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. The 

input to the function are the values “𝑎, 𝑏, 𝑐” and the output of the function should 

be in the variable names “𝑝, 𝑞” appropriately declared. 

2. Write a Scilab program to compute sum of first ‘n’ natural numbers. 

3. Write a Scilab program to compute factorial of a natural number ‘n’. 
                                                           
4 Same applies to built-in functions of Scilab also. 
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4. Write a Scilab program using for loop to compute the sum of two given matrices, 

if they are of comparable order. 

5. Write a Scilab program to compute the number of permutations & number of 

combinations for given values of ‘n’ and ‘r’. 

6. Write a Scilab program to compute sum of digits of a natural number ‘n’. 

7. Write a Scilab program to find the number of digits of a natural number ‘n’. 

8. Write a Scilab program to obtain a number with digits as the reverse of a given 

natural number ‘n’. 

9. Write a Scilab program to test whether a given number is Palindrome. 

10. Write a Scilab program to test whether a given number is Armstrong number. 

11. Write a Scilab program to obtain the binary equivalent of a given decimal 

number. 

12. Write a Scilab program to obtain the decimal equivalent of a given binary 

number. 
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Chapter 5: Plotting 

 

One of most useful and rapid ways of analysing data is through plots and 

graphics. Supplementing reports on data analysis with plots and graphics is most 

prevalently used practice since long in industry, academia, and research.  

Scilab provides multiple built-in features for creating and customizing various 

types of plots and charts. In this chapter, we will learn about creating 2D plots, contour 

plots and 3D plots. In the final section of this chapter, we will learn about graphics 

features available in Scilab for customizing the plots by labelling them with the title and 

and axes lables, and the legend of our graphics.  

Scilab enables plotting of multiple charts like 2-dimensional plots, Contour plots, 

surface (3-dimensional) plots, histograms, bar charts, etc. The precise details of each of 

these can be accessed through the help document of Scilab. Details are presented here 

only for some of these basic plots while keeping into consideration the learning 

objectives of beginners. 

 

5.1 The 2-dimensional plot 

This plotting feature of Scilab enables to produce a plot of the curve of a real-

valued function defined on a closed bounded interval. Of course, x-axis is used for 

depicting the independent variable and y-axis for the dependent variable.  

The 2-dimentional plot for any function 𝑓: ,𝑎, 𝑏- → ℝ, is obtained by joining 

multiple points on x-y plane which lie on the graph of the function (i.e.,   𝑥, 𝑓(𝑥) : 𝑥 ∈

,𝑎, 𝑏- ). The steps for this are as following. 

Step 1. First, the function is defined as a Scilab function. For example, for obtaining 

the 2D plot of the function 𝑓: ,−2, 2- → ℝ as 𝑓(𝑥) =  𝑥2 . The function be 

defined as: 

function f_x=f(x) 

    f_x = x.^2 

endfunction 

(Here, the output variable of the Scilab function program is computed using the 

element-wise power. The reason for the same will get clear in Step 3.) 
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Step 2. For obtaining such multiple points of the graph of the function (say, n in 

mumber), a vector of values in the domain ,𝑎, 𝑏- are taken. 

For example, for predefined values of a, b, and n, the vector may be obtained 

by the command: 

xv = linspace(a, b, n) 

Step 3. Then, the vector of corresponding image values can be obtained by calling the 

function defined in Step 1. For example, 

yv = f(xv) 

(Here it should be observed that the input to above function is a vector, 

therefore, the definition of function used appropriately the element-wise 

power to accommodate squaring of the values of each element of the input 

vector.) 

Step 4. Finally, the plotting of the points on graph thus obtained is done by using the 

built-in function plot as demonstrated below. 

plot(xv, yv) 

 

Example 5.1: Let us sequence these commands as a Scilab program to obtain the plot of 

the function 𝑓(𝑥) =  𝑥2 , as defined in Step 1. 

Program: 

function f_x=f(x) 

    f_x = x.^2 

endfunction 

a = -2; b = 2; n = 51 

xv = linspace(a, b, n) 

yv = f(xv) 

plot(xv, yv) 

Upon execution of this program, following figure appears as a 2D plot in the graphics 

window of Scilab. 
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5.2 Contour plot 

Closed curves on the 2-dimensional plane are called contours. Equation of a 

contour is represented generally through implicit relation between variables x and y of 

the form:   

    𝑓(𝑥, 𝑦) = constant      (1) 

In the equation given above, different curves are represented for different values 

of the constant. This indicates it as a family of contours across different values of 

constant. Contours can be related with surface plots (discussed in the next section) as 

level curves on a 3D surface. The reason behind this is that a 3D surface is represented 

through the equation  

    𝑧 = 𝑓(𝑥, 𝑦).       (2) 

Therefore, for each real number value of the constant in equation (1), contour 

represents closed curve(s) obtained by slicing the surface (2) parallel to the x-y plane at 

the level 𝑧 (i.e., keeping the variable 𝑧 as constant).   

The plotting of contours is thereby appropriately visualized on x-y plane. Also, in 

view of the above discussion, the computation for the purpose of plotting is done by 

taking both 𝑥 and 𝑦 as independent variables, then obtaining values for the variable 𝑧 

using the equation (2), and then using an appropriate plotting function. 

The steps for this are as following. 

Step 1. First, the function 𝑓(𝑥, 𝑦) is defined as a Scilab function with two input 

arguments. For example, for obtaining contour plots for the function 

𝑓(𝑥, 𝑦) =  𝑥2 + 𝑦2 over the 2-dimensional region given by ,−2, 2- × ,−2, 2-. 

The function be defined as: 
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function z=f2(x, y) 

    z = x.^2 + y.^2 

endfunction 

(Here, the output variable of the Scilab function program is computed using the 

element-wise power due to the same reason as explained in the previous 

section.) 

Step 2. Following the theory discussed above, vectors of values both 𝑥 and 𝑦 variables 

are obtained in their respective domains say, ,𝑎, 𝑏- × ,𝑐, 𝑑-. 

For example, for predefined values of a, b, c, d, and n, vectors may be obtained 

by the commands: 

xv = linspace(-2, 2, 50) 

yv = linspace(-2, 2, 50) 

Step 3. Then, the vector of corresponding image values can be obtained by calling the 

function defined in Step 1. For example, 

zv = f2(xv, yv); 

Step 4. Finally, contours are plotted using the built-in function contour as 

demonstrated below. 

contour(xv, yv, f2, n) 

Here, n represents the number of contours to be plotted. 

 

Example 5.2: Let us sequence these commands as a Scilab program to obtain the 

contour plot of the function 𝑓(𝑥) =  𝑥2 + 𝑦2, as defined in Step 1. 

Program: 

function [z]= Contour_Plot() 

    xdata = linspace(-2, 2, 50); 

    ydata = linspace(-2, 2, 50); 

    z = f2(xdata, ydata); 

    xtitle("Contours for the function x^2 + y^2", "X-

axis", "Y-axis") 

    contour(xdata, ydata, f2, 5) 

endfunction 
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Upon execution of this program, following figure appears as contour plot in the graphics 
window of Scilab. 

 

5.3 The 3-dimensional plot (Surface plot) 

Suppose that a 3D surface be represented through the equation  

    𝑧 = 𝑓(𝑥, 𝑦).       (2) 

The plotting of 3D surface is done by performing the steps as given below. 

Step 1. First, the function 𝑓(𝑥, 𝑦) is defined as a Scilab function with two input 

arguments. For example, for obtaining the 3-D plot for the surface 

𝑧 = 𝑓(𝑥, 𝑦) =  𝑥𝑦(sin 𝑥 + 2 cos 𝑦) over the 2-dimensional region given by 

,−2, 2- × ,−2, 2-. The function be defined as: 

function z=f2(x, y) 

    X.*Y.*(sin(X) + 2*cos(Y)); 

endfunction 

(Instead of defining the function separately, it may alternatively be used 

directly along the main program.) 
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Step 2. Following the same theory as discussed in the previous section, vectors of 

values both 𝑥 and 𝑦 variables are obtained in their respective domains say, 

,𝑎, 𝑏- × ,𝑐, 𝑑-. 

For example, for predefined values of a, b, c, d, and n, vectors may be obtained 

by the commands: 

xv = linspace(-2, 2, 50) 

yv = linspace(-2, 2, 50) 

Step 3. A meshgrid is to be created for obtaining points (𝑥, 𝑦) with coordinates given 

by components of vectors created in the previous step. The built-in function 

meshgrid is used for this purpose for creating the cross product of vectors 

xv and yv, as demonstrated below. 

[X,Y] = meshgrid(xdata, ydata); 

Step 4. Then, the vector of corresponding image values can be obtained by calling the 

function defined in Step 1. For example, 

zv = f2(xv, yv); 

Step 5. Finally, the 3-dimensional surface is plotted using the built-in function surf 

as demonstrated below. 

surf(xv, yv, zv) 

 

Example 5.3: Let us sequence these commands as a Scilab program to obtain the 3-D 

plot of the surface given by 𝑧 = 𝑥𝑦(sin 𝑥 + 2 cos 𝑦), as defined in Step 1. 

Program: 

function [X, Y, Z]=Surface_Plot() 

    xdata = linspace(-10, 10, 50) 

    ydata = linspace(-10, 10, 50)  

    [X,Y] = meshgrid(xdata, ydata); 

    Z = X.*Y.*(sin(X) + 2*cos(Y)); 

    surf(X,Y,Z) 

endfunction 

 

Upon execution of this program, following figure appears as a 3-D plot in the graphics 
window of Scilab. 
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5.4 Titles, axis, legends and Style options 

Scilab is equipped with a wide variety of graphics features. In this section, we 

will learn about the most basic features, particularly, which enable the user to configure 

the title, axis and legends on x-y plot. 

Title 

The title command enables to give the introductory detail of the figure in the 

form of a message coded as a string. The syntax of this command is 

title("Title as a string") 

Axis 

To configure the labelling of both the axis of a 2-D plotting, appropriate messages 

(coded as a strings) can be used through the command having a syntax as demonstrated 

below. 

xtitle("Title as a string", "X-axis", "Y-axis") 

Legends 

While plotting multiple curves in a single figure, labels can be given to each curve 

for its identification using the legends. The syntax of this command is 

legend("String 1" , "String 2"); 

For using the legend command, the plot command is required to be used with 

its advanced feature by specifying it color or style option. Therefore, user needs to learn 

these options also for using the feature of configuring legend of a 2D-plot. 



Programming using SCILAB                       Page 67 
 

Style options 

A more general syntax of plot command is as following. 

plot(xv,yv, "Style option") 

The style option in the plot command is a character string that consists of 1, 2 or 3 

characters that specify the color and/or the line style. Different color, line-style and 

marker-style options are summarized in following Table. 

Color style-option Line style-option Marker style-option 

y yellow - solid + plus sign 

m magenta -- dashed o circle 

c cyan : dotted * Asterisk 

r red -. dash-dot x x-mark 

g green   . Point 

b blue   ^ up triangle 

w white   s square 

k black   d diamond 

 

Example 5.3: All these graphics configurations are demonstrated through the following 

program for plotting of curves 𝑦 = 𝑥2  and 𝑦 = 𝑥4  in a 2D-plot. 

Program: 

function f=myquadratic(x) 

    f= x.^2 

endfunction 

 

function f=myquadratic2(x) 

    f= x.^4 

endfunction 

 

xdata = linspace(-2,2,50); 

ydata = myquadratic( xdata ); 

plot(xdata,ydata, "+-") 

ydata2 = myquadratic2(xdata ); 

plot(xdata, ydata2 ,"o-") 

xtitle("THE GRAPH OF f(x)=x^2 AND f(x)=x^4" , "X AXIS" , 

"Y AXIS" ); 

legend("x.^2" , "x.^4"); 

 

The output of this program comes out as a 2D-plot given below. 
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Exercise 5 

1. Write a Scilab program to obtain the plot of 2-dimensional graph of a given 

function with single input argument and single output argument. The given 

function is 𝑓(𝑥) = 𝑥2  in the domain ,−2, 2-. Label the title of the figure and axes 

appropriately. Demonstrate the use of style options in the program. 

2. Write a Scilab program to obtain the plot of 2-dimensional graph of two given 

function with single input argument and single output argument. The given 

function is 𝑓(𝑥) = 𝑥2 and 𝑔(𝑥) =  𝑥3  in the domain ,−2, 2-. Label the title of the 

figure and axes appropriately. Demonstrate the use of style options and legends 

in the program to distinguish the two curves while plotting the figure. 

3. Write a Scilab program to obtain plot a contour plot of a given function with two 

input arguments and single output argument. The given function is 𝑓(𝑥, 𝑦) =
𝑥2

4
+

𝑦2

9
, where each of 𝑥 and 𝑦 to vary in the interval ,−10, 10-. Label the title of 

the figure and axes appropriately.  

4. Write a Scilab function program for 3-dimensional surface plot of a given 

function with two input arguments and single output arguments. The given 

function is 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2, where each of 𝑥 and 𝑦 to vary in the interval 

,−50, 50-. Label the title of the figure and axes appropriately. 
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Chapter 6: Solving Ordinary Differential 

Equations 

 

There are multiple numerical methods available to solve differential equations 

for approximate solutions. Programs can be coded for such methods by learning their 

procedural details. Also, a package of built-in functions for these methods is developed 

by creators of Scilab with the name ode. The package is detailed in the help document 

of Scilab. All those detailed are compiled here from the same source. 

 

6.1 Solving first-order ordinary differential equations 

The package ode which solves explicit ordinary different equations given by:  

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) 

𝑦(𝑡0) = 𝑦0. 

Calling sequence 

The simplest call of ode is:  

y = ode(y0,t0,t,f) 

In this calling sequence, 

 y0 is the vector of initial conditions, t0 is the initial time,  

 t is the vector of times at which the solution y is computed and y is matrix of 

solution vectors given by y = [y(t(1)),y(t(2)),...]. 

 The input argument f defines the right hand side of the first order differential 

equation.  

 This argument is a function with a specific header. If f is a Scilab function, its 

calling sequence must be    

ydot = f(t,y) 

  

where t is a real scalar (the time) and y is a real vector (the state) and ydot is a 

real vector (the first order derivative 
𝑑𝑦

𝑑𝑡
).  
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The Solver 

The type of problem solved and the method used depend on the value of the first 

optional argument type which can be one of the following strings:  

<not 

given> 

lsoda solver of package ODEPACK is called by default. It 

automatically selects between nonstiff predictor-corrector Adams 

method and stiff Backward Differentiation Formula (BDF) method. It 

uses nonstiff method initially and dynamically monitors data in 

order to decide which method to use. 

"adams" This is for nonstiff problems. lsode solver of package ODEPACK is 

called and it uses the Adams method. 

"stiff" This is for stiff problems. lsode solver of package ODEPACK is 

called and it uses the BDF method. 

"rk" Adaptive Runge-Kutta of order 4 (RK4) method. 

"rkf" The Shampine and Watts program based on Fehlberg's Runge-Kutta 

pair of order 4 and 5 (RKF45) method is used. This is for non-stiff 

and mildly stiff problems when derivative evaluations are 

inexpensive. This method should generally not be used when the 

user is demanding high accuracy. 

"fix" Same solver as "rkf", but the user interface is very simple, i.e., only 

rtol and atol parameters can be passed to the solver. * 

"root" ODE solver with rootfinding capabilities. The lsodar solver of 

package ODEPACK is used. It is a variant of the lsoda solver where 

it finds the roots of a given vector function. See help on ode_root for 

more details. 

"discrete" Discrete time simulation. See help on ode_discrete for more details. 

 

* The tolerances rtol and atol are thresholds for relative and absolute estimated errors. 

The estimated error on y(i) is: rtol(i)*abs(y(i))+atol(i) and integration is 

carried out as far as this error is small for all components of the state. If rtol and/or 

atol is a constant, rtol(i) and/or atol(i) are set to this constant value. Default 

values for rtol and atol are respectively rtol=1.d-5 and atol=1.d-7 for most 

solvers and rtol=1.d-3 and atol=1.d-4 for "rfk" and "fix".  

ode_root.html
ode_discrete.html
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Example 6.1: In the following example, we solve the Ordinary Differential Equation 
𝑑𝑦

𝑑𝑡
= 𝑦2 − 𝑦 sin 𝑡 + cos 𝑡 with the initial condition 𝑦(0) = 0. We use the default solver.  

function ydot=f(t, y) 

    ydot=y^2-y*sin(t)+cos(t) 

endfunction 

y0=0; 

t0=0; 

t=0:0.1:%pi; 

y = ode(y0,t0,t,f); 

plot(t,y) 

 

Output:  

 

Example 6.2: In the following example, we solve the equation 
𝑑𝑦

𝑑𝑡
= 𝐴𝑦. The exact 

solution is y(t)=expm(A*t)*y(0), where expm is the matrix exponential. The 

unknown is the 2 × 1 matrix y(t).  

function ydot=f(t, y) 

    ydot=A*y 

endfunction 

function J=Jacobian(t, y) 

    J=A 

endfunction 

A=[10,0;0,-1]; 

y0=[0;1]; 

t0=0; 

t=1; 
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y=ode("stiff",y0,t0,t,f,Jacobian) 

disp("Solution given by the solver:") 

disp("y = ") 

disp(y) 

 

// Compare with exact solution: 

disp("Exact solution:") 

disp("y = ") 

disp(expm(A*t)*y0) 

 
Output:  

Solution given by the solver:    

 

 y =     

    0.          

    0.3678794   

  

 Exact solution:    

  

 y =     

    0.          

    0.3678794   

 
 

6.2 Solving second-order ordinary differential equations 

As a package for solving first-order ordinary differential equations is available in 

Scilab, the same can be used to solve second-order ordinary differential equations also 

just by using a substitution procedure. In this section, we will learn the procedure for 

this purpose and then we can use the package learnt in previous. Let us consider a 

second-order ordinary differential equation with initial conditions as given below.  

𝑑2𝑦

𝑑𝑡2
+ 𝑔(𝑡)

𝑑𝑦

𝑑𝑡
 = 𝑓(𝑡, 𝑦) 

𝑦(𝑡0) = 𝑦0, 𝑦′(𝑡0) = 𝑦1. 

Such a differential equation can be dealt with the substitution: 

𝑤 =
𝑑𝑦

𝑑𝑡
. 

This reduces the given second-order ordinary differential equation into a pair of 

first-order ordinary differential equations, as expressed below. 

𝑑𝑦

𝑑𝑡
= 𝑤 
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𝑑𝑤

𝑑𝑡
+ 𝑔(𝑡)𝑤 = 𝑓(𝑡, 𝑦) 

This system of first-order ordinary differential equations can be arranged into a 

vector for as: 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑡, 𝑥), 

where 𝑥 =  
𝑦
𝑤

 , 𝐹(𝑡, 𝑥) =  
𝑤

𝑓(𝑡, 𝑦) −  𝑔(𝑡)𝑤 = ,𝑤;  𝑓(𝑡, 𝑦) −  𝑔(𝑡)𝑤-, and therefore  

𝑑𝑥

𝑑𝑡
=  

𝑑𝑦

𝑑𝑡
𝑑𝑤

𝑑𝑡

 =  
𝑑𝑦

𝑑𝑡
 ;  

𝑑𝑤

𝑑𝑡
 . 

Example 6.3: Through this example, we solve demonstrate the procedure to simplify 

appropriately the second-order ordinary differential equation 
𝑑2𝑦

𝑑𝑡2
= sin 2𝑡 with initial 

conditions 𝑦(0) = 0 and 𝑦′(0) = −1/2.  

Procedure: Let us convert the given second-order ordinary differential equation into a 

first-order one, by an appropriate substitution 

𝑑𝑦

𝑑𝑡
= 𝑧. 

Thereby, the given equation reduces to 

𝑑𝑤

𝑑𝑡
= sin 2𝑡. 

This forms the vectorized first-order differential equation 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥) 

where 𝑥 = ,𝑦;   𝑤-, 𝑓(𝑡, 𝑥) = ,𝑤;  sin 2𝑡-, and therefore  

𝑑𝑥

𝑑𝑡
=  

𝑑𝑦

𝑑𝑡
 ;  

𝑑𝑤

𝑑𝑡
 . 

The derivative function in Scilab can thus be defined as following.  

function dx=f(t, x) 

    dx(1)=x(2)+cos(t) 

    dx(2)= sin(2*t) 

endfunction 
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Some more examples are provided in the help document on solving ordinary 

differential equations by specifying other solvers as listed in the table given above. 

Details presented here are sufficient for learning the basics of ode package of Scilab 

and using the same for solving simpler ordinary differential equations with initial 

conditions. Readers interested in learning this package in a detail are suggested for 

referring to the ode package in the “Differential calculus, Integration” section of the 

help document. 

 

Exercise 6 

1. Solve and plot the graph of the solution of following ordinary differential 

equation 

𝑑𝑦

𝑑𝑡
= 𝑦2 − 𝑦 sin 𝑡  + cos 𝑡  

with initial value 𝑦(0) = 0 (i.e., 𝑦0 = 0 at 𝑡0 = 0). 

2. Solve and plot the graph of the solution of following ordinary differential 

equation 

𝑑𝑦

𝑑𝑡
= 10𝑦  

with initial value 𝑦(0) = 5. 

3. Solve and plot the graph of the solution of following ordinary differential 

equation 

𝑦′′ = 2  

with initial value 𝑦(0) = 5, 𝑦′(0) = 6. 
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Chapter 7: Polynomials in Scilab 

 

Polynomials play an important role in multiple areas of Mathematics. Especially, 

discussions of matrix theory and algebra mainly require dealing with polynomials. 

Scilab enables defining polynomials, their operations and handling of matrices of 

polynomials. Let us learn about defining polynomials in Scilab in the first section of this 

chapter. In the later sections, we will learn about different operations on polynomials. 

 

7.1 Defining polynomials 

Scilab-keyword poly is used for defining a polynomial with the calling sequence 

discussed below. 

p = poly(a, vname, ["flag"]) 

 

where, the details of arguments of this calling sequence are as given below. 

A  a matrix or real number 

vname a string, for defining the symbolic variable name.  

(The string must be maximum 4 characters.) 

"flag" string ("roots", "coeff"), for specifying that values given in vector 

a are to be considered as roots or coefficients of the polynomial being 

defined. 

default value is "roots" 

Shortcuts can be also used: "r" for "roots" and "c" for "coeff". 

 

Let us learn the concept of defining polynomials in some detail through the 

discussion given below. The discussion can be separated into two sections, depending 

on the type of first argument being used. 

7.1.1 Case when the first argument ‘a’ is a vector 

For the case, when the first argument „a‟ is a vector, component values of the 

vector represent either the coefficients of the polynomial or the roots of the 
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polynomial, depending upon the specification through the third argument specified as 

"coeff" or "roots", respectively.  

 

Example 7.1: For defining a polynomial 2 + 5𝑥 + 4𝑥3 and 1 + 2𝑦 + 3𝑦2 + 4𝑦3in Scilab 

the following commands are to be used. 

p1 = poly([2, 5, 0, 4], “x”, “coeff”) 

 

p2 = poly([1, 2, 3, 4], “y”, “coeff”) 

 
Output: The output, when displayed, would appear in Scilab Console, as is 
demonstrated below. 
 
p1  = 

               3   

    2 + 5x + 4x    

p2  = 

               2    3   

    1 + 2y + 3y + 4y    

 

Example 7.2: For defining a polynomial in Scilab, in variable 𝑥 which has roots four 

roots, namely, 2, 5, 0, and 4, the following command is to be used. 

p3 = poly([2, 5, 0, 4], “x”, “roots”) 

 

Output: The output, when displayed, would appear in Scilab Console, as is 
demonstrated below. 
  
p3  = 

             2     3   4   

  - 40x + 38x - 11x + x    

 

Remark 1: The same output can be achieved by a similar command in which the third 

input argument is not mentioned. This is demonstrated through the following 

command. 

p3 = poly([2, 5, 0, 4], “x”) 

Another way of defining polynomials with specified coefficients and specified 

symbol variable is by first defining the seed for polynomial and then defining the 

polynomial as demonstrated below. 

For defining a polynomial in a symbol variable ‘s’, the seed for polynomial is 

defined using the following command. 
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s = poly(0,"s"); 

This command given above to define the seed for polynomial basically defines s 

as a polynomial in symbol variable s. A polynomial in the symbol variable ‘s’ using this 

seed for polynomial can be defined using the following command. 

p = 1+s+2*s^2; 

This defines the polynomial 𝑝 = 1 + 𝑠 + 2𝑠2 in symbol variable “𝑠”.  

 

Remark 2: Polynomials can be defined by either of the procedure as described above in 

the main discussion vis-à-vis through the procedure described in the remark 1. The 

same can be verified through a small exercise performed in the Console itself, as 

demonstrated below. 

-->s=poly(0,"s") 

 s  = 

     s    

 -->p=1+s+2*s^2 

 p  = 

               2   

    1 + s + 2s    

 -->p1 = poly([1, 1, 2], "s", "coeff") 

 p1  = 

               2   

    1 + s + 2s    

-->p==p1 

 ans  = 

  T   

 

7.1.2 Case when the first argument ‘a’ is a 2-dimensional matrix 

For the case, when the first argument „a‟ is a 2-dimensional matrix, the calling 

sequence 
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p = poly(a, "s") 

gives the characteristic polynomial corresponding to the matrix stored in the 

variable name „a‟.  

For example, 

-->A=ones(2,2) 

 A  = 

    1.    1.   

    1.    1.   

-->poly(A,"x") 

 ans  = 

          2   

  - 2x + x    

-->B = [0, 1; 1, 0] 

 B  = 

    0.    1.   

    1.    0.   

-->poly(B,"x") 

 ans  = 

         2   

  - 1 + x     

 

7.2 Matrices of polynomials 

The way matrices of real or complex numbers can be defined in Scilab, matrices 

of polynomials can also be defined in this software. For this purpose, first the seed for 

polynomials is needed to be defined, and then matrices of polynomials the defined 

symbol variable can be defined using the same rules as we define matrices of numbers. 

This procedure is demonstrated below through a Scilab session in Console. 

-->s=poly(0,'s') 

 s  = 
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    s    

-->M1 = [1+s, 1+s^2; s-s^3, 2+s] 

 M1  = 

                    2   

    1 + s     1 + s    

                       

         3             

    s - s     2 + s      

 

7.3 Operations on polynomials or matrices of polynomials 

7.3.1 Operations on polynomials  

Algebraic operations on the polynomials can be performed with their natural 

symbols, as are used for numbers or matrices. The addition, subtraction, 

multiplications, division of polynomials is demonstrated through a Scilab session in 

Console.  

 

-->p1 = poly([1, 2, 3, 4], 'x', 'coeff') 

 p1  = 

               2    3   

    1 + 2x + 3x + 4x    

-->p2 = poly([2, 4, 0, 9, 5], 'x', 'coeff') 

 p2  = 

               3    4   

    2 + 4x + 9x + 5x    

-->p3 = p1 + p2 

 p3  = 

               2     3    4   

    3 + 6x + 3x + 13x + 5x    

-->p4 = p1 - p2 
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 p4  = 

               2    3    4   

  - 1 - 2x + 3x - 5x - 5x    

-->p5 = p1 * p2 

 p5  = 

                2     3     4     5     6     7   

    2 + 8x + 14x + 29x + 39x + 37x + 51x + 20x    

-->p6 = p1/p2 

 p6  = 

               2    3   

    1 + 2x + 3x + 4x    

    ----------------    

               3    4   

    2 + 4x + 9x + 5x    

  

-->p7 = 2*p1 

 p7  = 

               2    3   

    2 + 4x + 6x + 8x    

 

7.3.2 Operations on matrices of polynomials  

Appropriate algebraic operations on the matrices of polynomials can be 

performed with their natural symbols, as are used for matrices of numbers. The 

addition, subtraction, multiplications, division of polynomials is demonstrated through 

a Scilab session in Console.  

-->s=poly(0,'s') 

 s  = 

    s    
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-->M1 = [1+s, 1+s^2; s-s^3, 2+s] 

 M1  = 

                   2   

    1 + s     1 + s    

         3             

    s - s     2 + s     

-->M2 = [1+s^2, -s; s^3, -2+s^2+s^3] 

 M2  = 

          2                 

    1 + s      - s            

      3               2   3   

    s          - 2 + s + s    

 -->M1+M2 

 ans  = 

              2             2   

    2 + s + s     1 - s + s    

                        2   3   

    s             s + s + s    

-->M3 = 2*M1 

 M3  = 

                       2   

    2 + 2s      2 + 2s    

            3              

    2s - 2s     4 + 2s    

-->M4 = M1 - M2 

 M4  = 

         2              2       

    s - s      1 + s + s        

          3             2   3   

    s - 2s     4 + s - s - s    
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-->M5 = M1*M2 

 M5  = 

             2    3   5              2   3   4   5   

    1 + s + s + 2s + s   - 2 - s - 2s + s + s + s    

          3   4   5                  2    3    4     

    s + 2s + s - s       - 4 - 2s + s + 3s + 2s      

 

7.4 Evaluation of polynomials 

The evaluation of polynomials at some values of matrices is done in Scilab using 

the Scilab built-in function horner. The calling sequence of this function is as following.  

horner(P,x) 

In this calling sequence, the arguments have interpretation given by: 

P polynomial or rational matrix  

x array of numbers or polynomials or rationals  

This function evaluates the polynomial or rational matrix P = P(s) when the variable 

s of the polynomial is replaced by x:  

horner(P,x)=P(x)  

Some examples from a Scilab session demonstrate the working of this function. 

-->s=poly(0,'s') 

-->P=1 + 2*s + 3*s^2 

P  = 

                2   

    1 + 2s + 3s    

-->horner(P,1) 

 ans  = 

    6.   

-->horner(P,0) 
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 ans  = 

    1.   

// Evaluation of polynomial at another polynomial 

-->horner(P,s) 

 ans  = 

               2   

    1 + 2s + 3s    

-->horner(P,s^2) 

 ans  = 

           2    4   

    1 + 2s + 3s    

-->x=poly(0,'x') 

 x  = 

    x    

-->horner(P,x) 

 ans  = 

               2   

    1 + 2x + 3x    

// Evaluation of polynomial at a vector 

-->horner(P,[1 2 5]) 

 ans  = 

    6.    17.    86.   

// Evaluation of polynomial at a matrix 

-->A=eye(2, 2) 

 A  = 
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    1.    0.   

    0.    1.   

-->horner(P, A) 

 ans  = 

    6.    1.   

    1.    6.   

// Evaluation of polynomial at a complex number 

-->horner(P,%i) 

 ans  = 

  - 2. + 2.i   

// Evaluation of a matrix of polynomials or rationals 

-->M = [s, 1/s] 

-->horner(M, 1) 

ans  = 

    1.    1.   

-->horner(M,1/s) 

 ans  = 

    1     s    

    -     -    

    s     1    

// Evaluation of a polynomial for a matrix of numbers 

-->X= [1 2; 3 4] 

 X  = 

    1.    2.   

    3.    4.   
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-->p 

 p  = 

              2   

    1 + s + 2s    

-->p=poly(1:3,'x','c') 

 p  = 

               2   

    1 + 2x + 3x    

-->m=horner(p, X) 

 m  = 

    6.     17.   

    34.    57.   

-->1*X.^0+2*X.^1+3*X.^2 

 ans  = 

    6.     17.   

    34.    57.   

Observation: The last command confirms that the horner function evaluates a 

polynomial on a matrix, in a pointwise manner. The same may be confirmed through the 

following commands in a continuation of previous ones. 

-->Y= [1 2 3; 4 5 6] 

 Y  = 

    1.    2.    3.   

    4.    5.    6.   

-->m1=horner(p, Y) 

 m1  = 

    6.     17.    34.    

    57.    86.    121.   
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-->1*Y.^0+2*Y.^1+3*Y.^2 

 ans  = 

    6.     17.    34.    

    57.    86.    121.   

There are many more built-in functions enabling mathematical treatment of 

polynomials. Listing and explaining each one of them with only add pages in the book. 

As details of each of such functions can be explored through the help document also of 

the software, therefore it would be sufficient to conclude the chapter here with ample 

demonstration of basics of the topic. Readers are suggested to explore the 

“Polynomials” section of the help document for acquiring further knowledge on 

additional functions. 

 

Exercise 7 

1. Write a Scilab function program to perform the following: 

(a) Define and display two polynomials in 𝑥, as 

    𝑝1(𝑥) = 1 + 2𝑥 + 3𝑥2 + 4𝑥3, 

    and  𝑝2(𝑥) = 2 + 4𝑥 + 9𝑥3 + 5𝑥4. 

(b) Obtain and display the sum, difference, product, and fraction of above two 

polynomials, as 

𝑝3(𝑥) =  𝑝1(𝑥) + 𝑝2(𝑥), 

𝑝4(𝑥) =  𝑝1(𝑥) − 𝑝2(𝑥), 

𝑝5(𝑥)  =  𝑝1(𝑥) ∗ 𝑝2(𝑥),  

𝑝6(𝑥) =
𝑝1(𝑥)

𝑝2(𝑥)
. 

(c) Evaluate each of above defined six polynomials at a given value or a matrix 

(pointwise, in case of matrices). 

Call this function for testing with input as (1) 𝑥 = 1, (2) 𝑥 =  
1 2 3
0 1 1

 . 

2. Write a Scilab program to: 

(a) Obtain the characteristic polynomial as 𝑝𝐴(𝑥) for a given matrix 𝐴 as an 

input argument.  
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(b) Obtain the characteristic roots of the given matrix 𝐴 by solving the equation 

𝑝𝐴(𝑥) = 0 for its roots by calling the Scilab in-built function roots. 

(c) Obtain characteristic roots of the given matrix 𝐴, the spec function on 𝐴. 

(d) Test whether the characteristic roots obtained by method (b) and (c) are 

equal. 

(e) Call this function for testing with input as each of the following three 

matrices 

(1) 𝐴 =  
1 2
0 1

 , 

(2) 𝐴 =  
1 2
0 2

 , 

(3) 𝐴 =  
1 2 3
0 2 4
0 0 4

 . 

 


