
    

Digital Logic Fundamentals 
Semester - 1 

Unit-1: Introduction 

Digital Systems – Binary Numbers – Conversions – Types – Codes – Storage and Registers – Binary Logic – 
Boolean Algebra Theorems and Properties – Functions – Canonical and Standard Forms – Other Logic Operations 
– Digital Logic Gates 

 

Digital System 

A Digital system is an interconnection of digital modules and it is a system that manipulates discrete elements 

of information that is represented internally in the binary form. Now a day’s digital systems are used in wide 

variety of industrial and consumer products such as automated industrial machinery, pocket calculators, 

microprocessors, digital computers, digital watches, TV games and signal processing and so on. 

Number System-Binary, Octal, Decimal, Hexadecimal - Conversion from one system to another number system. 

Number : 

The way of quantifying anything , represented through various combination of symbols is called number. 

Digit : 

The various symbols representing a single number in any number system is called digit. 

E.g. Decimal number system (Arabic numerals): Digits: 0,1,2,3,4,5,6,7,8,9. 

Radix / Base (r) : 

The maximum number of different digits of any number system. E.g Decimal NS, r =10 

Number system: 

The properly structured number formation is called Number system. In number system there are different 

symbols and each symbol has an absolute value and also has place value. 

In general a number in a system having base or radix ‘ r ’ can be written as Number various 

combination digits according to position 

Nr = [ Integer part . Fractional part ] 

↑ Radix point 

= dn dn-1...d1d0 . d-1d-2...d-m The value, 

N10 = dnx rn + dn-1x rn-1 +...+ d1x r1 + d0x r0 + d-1x r-1 + d-2x r-2 +...+ d-mx r-m
 

* The right most digit of any number is called Least Significant Digit 

* The lef most digit of any number is called Most Significant Digit 

TYPES OF NUMBER SYSTEM:- 
 

There are four types of number systems. They are 

1. Decimal number system 

2. Binary number system 

3. Octal number system 

4. Hexadecimal number system 



 

DECIMAL NUMBER SYSTEM:- 

The decimal number system contain ten unique symbols 0,1,2,3,4,5,6,7,8 and 9. 

 In decimal system 10 symbols are involved, so the base or radix is 10. 

 It is a positional weighted system. 
 

BINARY NUMBER SYSTEM:- 

 The binary number system is a positional weighted system. 

 The base or radix of this number system is 2. 

 It has two independent symbols, The symbols used are 0 and 1. 

 A binary digit is called a bit 
 

OCTAL NUMBER SYSTEM:- 

 It is also a positional weighted system. 

 Its base or radix is 8. 

 It has 8 independent symbols 0,1,2,3,4,5,6 and 7. 

 Its base 8 = 23 , every 3- bit group of binary can be represented by an octal digit. 

 HEXADECIMAL NUMBER SYSTEM:- 

 The hexadecimal number system is a positional weighted system. 

 The base or radix of this number system is 16. 

 The symbols used are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F 

 The base 16 = 24 , every 4 – bit group of binary can be represented by an hexadecimal digit. 

CONVERSION FROM ONE NUMBER SYSTEM TO ANOTHER :- 
 

1. BINARY NUMBER SYSTEM:- 

(a) Binary to decimal conversion:- In this method, each binary digit of the number is multiplied by its 

positional weight and the product terms are added to obtain decimal number. 

 
  



 

 

(b) Binary to Octal conversion:- For conversion binary to octal the binary numbers are divided into groups of 3 

bits each, starting at the binary point and proceeding towards left and right. 
 

(c) Binary to Hexadecimal conversion:- For conversion binary to hexadecimal number the binary numbers 

starting from the binary point, groups are made of 4 bits each, on either side of the binary point. 
 

2. DECIMAL NUMBER SYSTEM:- 

(a) Decimal to binary conversion:- In the conversion the integer number are converted to the desired base using 

successive division by the base or radix. 

For example: (i) Convert (52)10 into binary. 

 
Decimal to octal conversion:- To convert the given decimal integer number to octal, successively divide the given 
number by 8 till the quotient is 0. 
 

  



 

(b) Decimal to hexadecimal conversion:- 
 

3. OCTAL NUMBER SYSTEM:- 

(a) Octal to binary conversion:- To convert a given a octal number to binary, replace each octal digit by its 3- 

bit binary equivalent. 
 

(b) Octal to decimal conversion:- For conversion octal to decimal number, multiply each digit in the octal 

number by the weight of its position and add all the product terms 
 

 

(c) Octal to hexadecimal conversion:- For conversion of octal to Hexadecimal, first convert the given octal 

number to binary and then binary number to hexadecimal 

 

 
(4) HEXADECIMAL NUMBER SYSTEM :- (a)Hexadecimal to binary conversion:- For conversion of hexadecimal to 

binary, replace hexadecimal digit by its 4 bit binary group 
 

 

  



 

(b)Hexadecimal to decimal conversion:- For conversion of hexadecimal to decimal, multiply each digit in the 

hexadecimal number by its position weight and add all those product terms. 
 

((c) Hexadecimal to Octal conversion:- For conversion of hexadecimal to octal, first convert the given 

hexadecimal number to binary and then binary number to octal 

Arithmetic Operation-Addition, Subtraction, Multiplication, Division, 1’s & 2’s complement of 

Binary numbers& Subtraction using complements method 

1. BINARY ADDITION:- 

The binary addition rules are as follows carry carry 
 

0 + 0 = 0 ; 0 + 1 = 1 ; 1 + 0 = 1 ; 1 + 1 = 1 0 , SUM, 1+1+1 = 1 1 SUM 
 

 

 
2. BINARY SUBTRACTION:- 

 

The binary subtraction rules are as follows 

0 - 0 = 0 ; 1 - 1 = 0 ; 1 - 0 = 1 ; 0 - 1 = 1 1 , with a borrow of 1 
 

3. BINARY MULTIPLICATION:- 

The binary multiplication rules are as follows 0 x 0 = 0 ; 1 x 

1 = 1 ; 1 x 0 = 0 ; 0 x 1 = 0 



 

 

4. BINARY DIVISION:- 

The binary division is very simple and similar to decimal number system. So we have only 2 

rules   0 ÷ 1 = 0 1 ÷ 1 = 1 

 

1’s COMPLEMENT REPRESENTATION :- 
 

The 1’s complement of a binary number is obtained by changing each 0 to 1 and each 1 to 0. 
 

2’s COMPLEMENT REPRESENTATION :- 

The 2’s complement of a binary number is a binary number which is obtained by adding 1 to the 1’s complement 

of a number. 

2’s complement = 1’s complement + 1 
 



 

SIGNED NUMBER :- 

In sign – magnitude form, additional bit called the sign bit is placed in front of the number. If the sign bit is 0, 

the number is positive. If it is a 1, the number is negative. 
 

SUBSTRACTION USING COMPLEMENT METHOD : 

1’s COMPLEMENT:- 

In 1’s complement subtraction, add the 1’s complement of subtrahend to the minuend. If there is a carry out, 

then the carry is added to the LSB. This is called end around carry. If the MSB is 0, the result is positive. If the 

MSB is 1, the result is negative and is in its 1‘s complement form. Then take its 1’s complement to get the 

magnitude in binary. 

 

 
 

2’s COMPLEMENT:- 

In 2’s complement subtraction, add the 2’s complement of subtrahend to the minuend. If there is a carry out, 

ignore it. If the MSB is 0, the result is positive. If the MSB is 1, the result is negative and is in its 2‘s complement 

form. Then take its 2’s complement to get the magnitude in binary. 
 

  



 

Digital Code & its Types 

DIGITAL CODES:- 

In practice the digital electronics requires to handle data which may be numeric, alphabets and special 

characters. This requires the conversion of the incoming data into binary format before it can be processed. 

There is various possible ways of doing this and this process is called encoding. To achieve the reverse of it, we 

use decoders. 

 WEIGHTED AND NON-WEIGHTED CODES 

There are two types of binary codes 

1) Weighted binary codes : In weighted codes, for each position ( or bit) ,there is specific weight attached. For 

example, in binary number, each bit is assigned particular weight 2n where ‘n’ is the bit number for n = 

0,1,2,3,4 the weights are 1,2,4,8,16 respectively. Example 

:- BCD 

2) Non- weighted binary codes: 

Non-weighted codes are codes which are not assigned with any weight to each digit position, i.e., each digit 

position within the number is not assigned fixed value. Example:- Excess – 3 (XS -3) code and Gray codes 

 

BINARY CODED DECIMAL (BCD):- BCD is a weighted code. In weighted codes, each successive digit from right 

to left represents weights equal to some specified value and to get the equivalent decimal number add the 

products of the weights by the corresponding binary digit. 8421 is the most common because 8421 BCD is the 

most natural amongst the other possible codes. 

BCD ADDITION:- 

Addition of BCD (8421) is performed by adding two digits of binary, starting from least significant digit. In case 

if the result is an illegal code (greater than 9) or if there is a carry out of one then add 0110(6) and add the 

resulting carry to the next most significant. 
 

BCD SUBTRACTION:- 

The BCD subtraction is performed by subtracting the digits of each 4 – bit group of the subtrahend from 

corresponding 4 – bit group of the minuend in the binary starting from the LSD. If there is no borrow from the 

next higher group[ then no correction is required. If there is a borrow from the next group, then 6 (0110) is 

subtracted from the difference term of this group. 



 

 

EXCESS THREE(XS-3) CODE:- 

The Excess-3 code, also called XS-3, is a non- weighted BCD code. This derives it name from the fact that each 

binary code word is the corresponding 8421 code word plus 0011(3). It is a sequential code. It is a self 

complementing code. 

Excess-3 code is non-weighted and self complementary code. A self complementary binary codes are always 

compliment themselves. The complement of a binary number can be obtained from that number by replacing 

0’s with 1’s and 1’s with 0’s. The sum of binary number and its complement is always equal to decimal 9. In 

other words, the 1’s complement of an excess-3 code is the excess-3 code for the 9’s complement of the 

corresponding decimal number. For example, the excess-3 code for decimal number 5 is 1000 and 1’s 

complement of 1000 is 0111, which is excess-3 code for decimal number 4, and it is 9’s complement of number 

5. 

ASCII CODE:- 

The American Standard Code for Information Interchange (ASCII) pronounced as ‘ASKEE’ is widely used 

alphanumeric code. This is basically a 7 bit code. The number of different bit patterns that can be created with 

7 bits is 27 = 128 , the ASCII can be used to encode both the uppercase and lowercase characters of the 

alphabet (52 symbols) and some special symbols in addition to the 10 decimal digits. It is used extensively for 

printers and terminals that interface with small computer systems. The table shown below shows the ASCII 

groups. 

GRAY CODE:- 

The gray code is a non-weighted code. It is not a BCD code. It is cyclic code because successive words in this 

differ in one bit position only i.e it is a unit distance code. Gray code is used in instrumentation and data 

acquisition systems where linear or angular displacement is measured. 

BINARY- TO – GRAY CONVERSION:- 
 



 

Boolean algebra, Boolean expressions, Demorgan’s Theorems. 

BOOLEAN ALGEBRA INTRODUCTION:- 

 Switching circuits are also called logic circuits, gates circuits and digital circuits. 

 Boolean algebra is a system of mathematical logic. It is an algebraic system consisting of the set of 

elements (0,1), two binary operators called OR and AND and unary operator called NOT. 

 It is the basic mathematical tool in the analysis and synthesis of switching circuits. 

 It is a way to express logic functions algebraically. 
AXIOMS AND LAWS OF BOOLEAN ALGEBRA:- 

Axioms or postulates of Boolean algebra are set of logical expressions that are accepted without proof and 

upon which we can build a set of useful theorems. 

Axiom 1: 0 . 0 = 0 Axiom 5: 0 + 0 = 0 Axiom 9: 1̄ = 0 

 Axiom 2: 

Axiom 3: 

Axiom 4: 

0 . 1 = 0 

1 . 0 = 0 

1 . 1 = 1 

Axiom 6: 

Axiom 7: 

Axiom 8: 

0 + 1 = 1 

1 + 0 = 1 

1 + 1 = 1 

Axiom 10:   0̄ = 1 

1. Complementation Laws:- 

The term complement simply means to invert, i.e. to changes 0s to 1s and 1s to 0s. The five laws of 

complementation are as follows: 

Law 1: 0̄ = 1 

Law 2: 1̄ = 0 

Law 3: if A = 0, then 𝐴̅ = 1 Law 4: if A = 

1,then 𝐴 = 0 

Law 5: 𝐴" = 0 (double complementation law) 

2. OR Laws:- 

The four OR laws are as follows Law 1: A + 0 = A 

(Null law) 

Law 2: A + 1 = 1(Identity law) Law 3: A + A = A 

Law 4: A +𝐴̅ = 1 

3. AND Laws:- 

The four AND laws are as follows Law 1: A . 0 = 0 (Null 

law) 

Law 2: A . 1 = A (Identity law) Law 3: A . A = A 

Law 4: A .𝐴̅ = 0 

4. Commutative Laws:- 

Commutative laws allow change in position of AND or OR variables. There are two commutative laws. 

Law 1: A + B = B + A Law 2: A . B = B . A 

5. Associative Laws:- 

The associative laws allow grouping of variables. There are 2 associative laws. Law 1: (A + B) + C = 

A + (B + C) 

Law 2: (A .B) C = A (B .C) 

6. Distributive Laws:- 

The distributive laws allow factoring or multiplying out of expressions. There are two distributive laws. 

Law 1: A (B + C) = AB + AC Law 2: A + BC = (A+B) 

(A+C) 

Proof: 

RHS = (A+B) (A+C) = AA + AC + BA + BC 

= A + AC + AB + BC 

= A (1+ C + B) + BC 

= A. 1 + BC  ( 1 +C + B = 1 + B = 1, FROM OR Law 2 ) 

= A + BC = LHS 

 



 

7. Redundant Literal Rule (RLR):- 

Law 1: A + 𝐴̅B = A + B Proof 

A + 𝐴̅B = (A + 𝐴̅) (A + B) 

= 1. (A + B) 

= A +B 

 

Law 2: A(𝐴̅ + B) = AB Proof 

A(𝐴̅ + B) = A𝐴̅ + AB = 0 + AB = AB 

8. Idempotence Laws:- Idempotence means same 

value. Law 1: A. A = A 

Law 2: A + A = A 

9. Absorption Laws:- 

There are two laws: 

Law 1: A + A ∙ B = A 

Proof: A + A ∙ B 

= A (1 + B) 

= A ∙ 1 = A 

 
Law 2: A ( A + B) = A 

Proof : A ( A + B) 

= A ∙ A + A ∙ B 

= A + AB 

= A(1 + B) 

= A ∙ 1 = A 

12. De Morgan’s Theorem:- 

De Morgan’s theorem represents two laws in Boolean algebra. 

This law states that the complement of a sum of variables is equal to the product of their individual complements. 

Law 1: 𝐴̄̄ +̄̄̄ 𝐵̄̄̄¯=   𝐴̅∙ 𝐵̄ 

 
 

Law 2:  𝐴̄̄.̄ ̄𝐵 = 𝐴 + 𝐵̄ 

This law states that the complement of a product of variables is equal to the sum of their individual 

complements. 

 

 

 
  



 

Canonical and Standard Form 
 

Canonical Form – In Boolean algebra, the Boolean function can be expressed as Canonical Disjunctive Normal 

Form known as minterm and some are expressed as Canonical Conjunctive Normal Form known as maxterm.  

  

 In Minterm, we look for the functions where the output results in “1” while in Maxterm we look for functions 

where the output results in “0”.  

  

 We perform the Sum of minterm also known as the Sum of products (SOP).  

 We perform Product of Maxterm also known as Product of sum (POS). 

 

Advantages of Canonical Form: 

Uniqueness: The canonical form of a boolean function is unique, which means that there is only one possible 

canonical form for a given function. 

Clarity: The canonical form of a boolean function provides a clear and unambiguous representation of the 

function. 

Completeness: The canonical form of a boolean function can represent any possible boolean function, regardless 

of its complexity. 

  

Disadvantages of Canonical Form: 

Complexity: The canonical form of a boolean function can be complex, especially for functions with many 

variables. 

Computation: Computing the canonical form of a boolean function can be computationally expensive, especially 

for large functions. 

Redundancy: The canonical form of a boolean function can be redundant, which means that it can contain 

unnecessary terms or variables that do not affect the function. 

  

Advantages of Standard Form: 

Simplicity: The standard form of a boolean function is simpler than the canonical form, making it easier to 

understand and work with. 

Efficiency: The standard form of a boolean function can be implemented using fewer logic gates than the 

canonical form, which makes it more efficient in terms of hardware and computation. 

Flexibility: The standard form of a boolean function can be easily modified and combined with other functions to 

create new functions that meet specific design requirements. 

 

Disadvantages of Standard Form: 

Non-uniqueness: The standard form of a boolean function is not unique, which means that there can be multiple 

possible standard forms for a given function. 

Incompleteness: The standard form of a boolean function may not be able to represent some complex boolean 

functions. 

Ambiguity: The standard form of a boolean function can be ambiguous, especially if it contains multiple 

equivalent expressions. 

  

  



 

Represent Logic Expression: SOP & POS forms SUM - OF -  

  

 PRODUCTS FORM:- 

 This is also called disjunctive Canonical Form (DCF) or Expanded Sum of Products Form or Canonical Sum 

of Products Form. 

 In this form, the function is the sum of a number of products terms where each product term 

contains all variables of the function either in complemented or uncomplemented form. 

The or product term which contains all the variables of the functions either in complemented 

uncomplemented form is called a minterm. 

 The minterm is denoted as mo, m1, m2 … . An ‘n’ variable function can have 2n 

minterms. 

PRODUCT- OF - SUMS FORM:- 

 This form is also called as Conjunctive Canonical Form ( CCF) or Expanded Product - of 

– Sums  This is by considering the combinations for which f = 0 

 Each term is a sum of all the variables. 

The sum term which contains each of the ‘n’ variables in either complemented or uncomplemented form is 

called a maxterm. 

 Maxterm is represented as M0, M1, M2, ……. f(A, B, C) = ΠM ( 0, 

4, 6, 7) 
 

  



 

Logic gates: AND, OR, NOT, NAND, NOR, Exclusive-OR, Exclusive-NOR-- Symbol, Function, 

expression, truth table & timing diagram 

LOGIC GATES:- 

 Logic gates are the fundamental building blocks of digital systems. 

 There are 3 basic types of gates AND, OR and NOT. 

 Logic gates are electronic circuits because they are made up of a number of electronic devices and 

components. 

 Inputs and outputs of logic gates can occur only in 2 levels( logic 1, logic 0). These two levels are termed 

HIGH and LOW, or TRUE and FALSE, or ON and OFF 

 The table which lists all the possible combinations of input variables and the corresponding 

output of any logic circuit/device, called a truth table. 

 
DIFFERENT TYPES OF LOGIC GATES 

 

 NOT GATE (INVERTER):- 

 A NOT gate, also called and inverter, has only one input and one output. 

 It is a device whose output is always the complement of its input. 

 The output of a NOT gate is the logic 1 state when its input is in logic 0 state and the logic 0 state when 

its inputs is in logic 1 state. 

 
AND GATE:- 

 An AND gate has two or more inputs but only one output. 

 The output is logic 1 state only when each one of its inputs is at logic 1 state. 

 The output is logic 0 state even if one of its inputs is at logic 0 state. 

OR GATE:- 

 An OR gate may have two or more inputs but only one output. 

 The output is logic 1 state, even if one of its input is 1 

 The output is logic 0 state, only when each one of its inputs is in logic state. 



 

  
 

NAND GATE:- 

 NAND gate is a combination of an AND gate and a NOT gate. 

 The output is logic 0 when each of the input is logic 1 and for any other combination of inputs, the 

output is logic 1. 

IC No.:- 7400 two input NAND gate 

NOR GATE:- 

 NOR gate is a combination of an OR gate and a NOT gate. 

 The output is logic 1, only when each one of its input is logic 0 and for any other combination of 

inputs the output is a logic 0 level. 

IC No.:- 7402 two input NOR gate 

EXCLUSIVE – OR (X-OR) GATE 

 An X-OR gate is a two input, one output logic circuit. 

 The output is logic 1 when one and only one of its two inputs is logic 1. When both the inputs is logic 0 or 

when both the inputs is logic 1, the output is logic 0. 

 
EXCLUSIVE – NOR (X-NOR) GATE 

 An X-NOR gate is the combination of an X-OR gate and NOT gate 



 

 An X-NOR gate is a two input, one output logic circuit. 

The output is logic 1 only when both the inputs are logic 0 or when both the inputs is 1. 

 The output is logic 0 when one of the inputs is logic 0 and other is 1 

 

Universal Gates & its Realisation 

UNIVERSAL GATES:- 

There are 3 basic gates AND, OR and NOT, there are two universal gates NAND and NOR. Both NAND and 

NOR gates can perform all logic functions i.e. AND, OR, NOT, EXOR and EXNOR. 

 
 

 



 

 



 

 
 

 

  



 

Unit-2: Gate‐Level Minimization 
Map Method – Four‐Variable K-Map – Product‐of‐Sums Simplification – Don’t‐Care Conditions – NAND and NOR 
Implementation – Other Two‐Level Implementations – Exclusive‐OR Function – Hardware Description 
Language 

 
KARNAUGH MAP OR K- MAP:- 

 

The simplification of Boolean expressions using Boolean algebraic rules is not unique and most of the cases, 
the resultant expression is not in minimal form. In order to get the uniqueness and final minimal form, K-map 
technique will be used. 

 The K- map is a chart or a graph, composed of an arrangement of adjacent cells, each representing a 

particular combination of variables in sum or product form 

.  The K- map is systematic method of simplifying the Boolean expression. 

Mapping of SOP Expression:- 

 The n variable K-map has 2n squares. These squares are called cells. 

A ‘1’ is placed in any square indicates that corresponding minterm is included in the output expression, 

and a 0 or no entry in any square indicates that the corresponding minterm does not appear in the 

expression for output. 

 
2 Variable K-map 

There is a total of 4 variables in a 2-variable K-map. There are two variables in the 2-variable K-map. The 
following figure shows the structure of the 2-variable K-map: 

 

o In the above figure, there is only one possibility of grouping four adjacent minterms. 

o The possible combinations of grouping 2 adjacent minterms are {(m0, m1), (m2, m3), (m0, m2) and (m1, m3)}. 

 

 

Karnaugh map (3 & 4 Variables) & Minimization of logical expressions, 

don’t care conditions 
3-variable K-map 

The 3-variable K-map is represented as an array of eight cells. In this case, we used A, B, and C for the 

variable. We can use any letter for the names of the variables. The binary values of variables A and B are along the 

left side, and the values of C are across the top. The value of the given cell is the binary values of A and B at left side 

in the same row combined with the value of C at the top in the same column. For example, the cell in the upper left 

corner has a binary value of 000, and the cell in the lower right corner has a binary value of 101. 



 

 
The 4-Variable Karnaugh Map 

The 4-variable K-map is represented as an array of 16 cells. Binary values of A and B are along the left side, 

and the values of C and D are across the top. The value of the given cell is the binary values of A and B at left side in 

the same row combined with the binary values of C and D at the top in the same column. For example, the cell in the 

upper right corner has a binary value of 0010, and the cell in the lower right corner has a binary value of 1010 

 
 

Simplification of boolean expressions using Karnaugh Map 

As we know that K-map takes both SOP and POS forms. So, there are two possible solutions for K-map, i.e., 

minterm and maxterm solution. Let's start and learn about how we can find the minterm and maxterm solution 

of K-map. 

 

Minterm Solution of K Map 

There are the following steps to find the minterm solution or K-map: 

 

Step 1:  Firstly, we define the given expression in its canonical form. 

Step 2: Next, we create the K-map by entering 1 to each product-term into the K-map cell and fill the remaining 

cells with zeros. 

Step 3: Next, we form the groups by considering each one in the K-map. 



 

 
Notice that each group should have the largest number of 'ones'. A group cannot contain an empty cell or cell 

that contains 0. 

 
In a group, there is a total of 2n number of ones. Here, n=0, 1, 2, …n. 

 

Example: 20=1, 21=2, 22=4, 23=8, or 24=16. 

 
We group the number of ones in the decreasing order. First, we have to try to make the group of eight, then for 

four, after that two and lastly for 1. 

 
In horizontally or vertically manner, the groups of ones are formed in shape of rectangle and square. We cannot 

perform the diagonal grouping in K-map. 

 

 
 

 

We can consider the 'don't care condition' only when they aid in increasing the group-size. Otherwise, 'don't 

care' elements are discarded. 

 

 



 

 
Step 4: 

In the next step, we find the boolean expression for each group. By looking at the common variables in cell-labeling, we define the groups in terms 
of input variables. In the below example, there is a total of two groups, i.e., group 1 and group 2, with two and one number of 'ones'. 

In the first group, the ones are present in the row for which the value of A is 0. Thus, they contain the complement of variable A. Remaining two 
'ones' are present in adjacent columns. In these columns, only B term in common is the product term corresponding to the group as A'B. Just like 
group 1, in group 2, the one's are present in a row for which the value of A is 1. So, the corresponding variables of this column are B'C'. The overall 
product term of this group is AB'C'. 

 
Step 5: 

Lastly, we find the boolean expression for the Output. To find the simplified boolean expression in the SOP form, we combine the product-terms of 
all individual groups. So the simplified expression of the above k-map is as follows: 

A'+AB'C' 
Let's take some examples of 2-variable, 3-variable, 4-variable, and 5-variable K-map examples. 

Example 1: Y=A'B' + A'B+AB 

 
Simplified expression: Y=A'+B 

  



 

Example 2: Y=A'B'C'+A' BC'+AB' C'+AB' C+ABC'+ABC 

 
Simplified expression: Y=A+C' 

Example 3: Y=A'B'C' D'+A' B' CD'+A' BCD'+A' BCD+AB' C' D'+ABCD'+ABCD 

 
Simplified expression: Y=BD+B'D' 

Maxterm Solution of K-Map 
To find the simplified maxterm solution using K-map is the same as to find for the minterm solution. There are some 
minor changes in the maxterm solution, which are as follows: 

1. We will populate the K-map by entering the value of 0 to each sum-term into the K-map cell and fill the 
remaining cells with one's. 

2. We will make the groups of 'zeros' not for 'ones'. 
3. Now, we will define the boolean expressions for each group as sum-terms. 
4. At last, to find the simplified boolean expression in the POS form, we will combine the sum-terms of all 

individual groups. 

Let's take some example of 2-variable, 3-variable, 4-variable and 5-variable K-map examples 

Example 1: Y=(A'+B')+(A'+B)+(A+B) 

 
Simplified expression: A'B 



 

Example 2: Y=(A + B + C') + (A + B' + C') + (A' + B' + C) + (A' + B' + C') 

 
Simplified expression: Y=(A + C') .(A' + B') 

Implementation of NOR Gate from NAND Gate 
Following is the implementation of NOR gate from NAND gate. First, we produce complements of inputs and 

further implement NOR logic. 

 

Logic Diagram for Implementation of NOR Gate from NAND Gate 

Below is the logic diagram for the implementation of NOR gate from NAND gate. 

 To Implement NOR Gate as a NAND Gate,We will Take two NAND gate and connect its two terminal together which will act 

as Inverter. 

 Input A and B are Fed to the NAND Gate having both Input terminal Together.So, the Output of Input A NAND gate Will give 

A’ ,Similarly B will give B’. 

 Then Both this Output is Fed to the NAND gate which will give Output as (A’B’)’. 

 Finally,a NAND gate is connected to this Output Having Both the Input Terminals Together, which will give output as 

A’.B’=(A+B)’ which is the Output of NOR gate. 

 

 
 
Implementation of OR Gate from NAND Gate 
 

The Implementation of OR Gate from NAND Gate is executed by using De Morgan’s theorem, which asserts that 

the complement of the AND operation is equivalent to the NAND operation, so that it can be used to construct 

an OR gate by using NAND gates. So that We can effectively execute the functionality of an OR gate by 

combining numerous NAND gates in a particular arrangement. So that we can implement an OR Gate by using 

NAND Gates. 

https://www.geeksforgeeks.org/de-morgans-law/


 

 

What is XOR Gate? 
 

XOR gate is a logic gate that results in an output high with an odd number of high inputs. In other words, if the 
number of 1’s is odd in the input then, the output of XOR is 1. XOR gate gives output 1 when all the inputs are 
different. The XOR is represented as ⊕. 

XOR Gate 
In the above table if the inputs are different then the output is 1 otherwise 0. 

 
Expression for 2-Input XOR Gate 

We get the expression of XOR gate as sum of products of complement of first input with second input 
and first input with complement of second input. From the above truth table, the expression of XOR gate 
is: 

A ⊕ B = A’B + AB’ 

 

https://www.geeksforgeeks.org/xor-gate/

