Digital Logic Fundamentals
Semester - 1

Unit-1: Introduction

Digital Systems — Binary Numbers — Conversions — Types — Codes —Storage and Registers — Binary Logic —
Boolean Algebra Theorems and Properties — Functions — Canonical andStandard Forms — Other Logic Operations
— Digital Logic Gates

Digital System

A Digital system is an interconnection of digital modules and it is a system that manipulatesdiscrete elements
of information that is represented internally in the binary form. Now a day’s digital systems are used in wide
variety of industrial and consumer products such as automated industrial machinery, pocket calculators,
microprocessors, digital computers, digital watches, TV games and signal processing and so on.

Number System-Binary, Octal, Decimal, Hexadecimal - Conversion from one system toanother number system.

Number :

The way of quantifying anything , represented through various combination of symbolsis called number.
Digit :

The various symbols representing a single number in any number system is called digit.

E.g. Decimal number system (Arabic numerals): Digits: 0,1,2,3,4,5,6,7,8,9.

Radix / Base (r) :

The maximum number of different digits of any number system. E.g Decimal NS, r =10

Number system:

The properly structured number formation is called Number system. In number systemthere are different
symbols and each symbol has an absolute value and also has place value.

In general a number in a system having base or radix ‘ r’ can be written asNumber various

combination digits according to position
Nr = [Integer part . Fractional part]
N Radix point
= dn dn-1...d1do. d-1d-2...d-mThe value,
Nio=dnX r" + dpax r™ 4.+ daxrt + doxr® + daxr + doxr?+..+ dpx r™
* The right most digit of any number is called Least Significant Digit

* The lef most digit of any number is called Most Significant Digit

TYPES OF NUMBER SYSTEM:-

There are four types of number systems. They are
1. Decimal number system

2. Binary number system

3. Octal number system

4. Hexadecimal number system

DECIMAL NUMBER SYSTEM:-

The decimal number system contain ten unique symbols 0,1,2,3,4,5,6,7,8 and 9.
e In decimal system 10 symbols are involved, so the base or radix is 10.
e |t is a positional weighted system.

(da X 10™) + (dpg X 10™Y) + (dnzX 10™2) + ... + (dox 10°) + (g x 10 ') + (d.2 X 10 %) +...4(d .u X 10~™)

For example:-
9256.26 =9 x 1000 +2x 100 + 5x 10 + 6 x 1 + 2 x (1/10) + 6 x (1/100)
=9x10°+2x10*+5x 10" +6x10°+2x 10" + 6 x 107

BINARY NUMBER SYSTEM:-

e The binary number system is a positional weighted system.
e The base or radix of this number system is 2.
e [t has two independent symbols, The symbols used are 0 and 1.
e A binary digit is called a bit
(da X 2%) # (dpy X 2"") + (dp2Xx 2"%) + .. (dox 2"+ (dyx27") + (dox2 Y +...4(d 4 x27%

OCTAL NUMBER SYSTEM:-

e |t is also a positional weighted system.

e |ts base or radix is 8.

e |t has 8 independent symbols 0,1,2,3,4,5,6 and 7.

e Its base 8 =23, every 3- bit group of binary can be represented by an octal digit.

HEXADECIMAL NUMBER SYSTEM:-

e The hexadecimal number system is a positional weighted system.

e The base or radix of this number system is 16.

e The symbols used are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F

e The base 16 = 24, every 4 — bit group of binary can be represented by an hexadecimaldigit.

CONVERSION FROM ONE NUMBER SYSTEM TO ANOTHER :-

1. BINARY NUMBER SYSTEM:-

(a) Binary to decimal conversion:- In this method, each binary digit of the number is multiplied by its
positional weight and the product terms are added to obtain decimalnumber.
(111.101); =(1x2)+(1x2)+(1x2")+(1x2")+(0x2H+(1x27)
=4+2+1+05+0+0.125
= (7.625),

(b)Binary to Octal conversion:- For conversion binary to octal the binary numbers are divided into groups of 3
bits each, starting at the binary point and proceeding towards leftand right.

(i) Convert (101111010110.110110011), into octal.

Solution :
Group of 3 bits are 101 111 010 110 . 110 110 011
Convert each group into octal = 5§ 7 2 6 . 6 6 3

The resultis (5726.663)

(c) Binary to Hexadecimal conversion:- For conversion binary to hexadecimal number the binary numbers
starting from the binary point, groups are made of 4 bits each, on either side of the binary point.

(ii) Convert (01011111011.011111); into hexadecimal.

Solution:
Given Binary number 010 1111 1011 . 0111 11
Group of 3 bits are = 0010 1111 1011 . 0111 1100
Convert each group into octal = 2 F B > 7 C

The result is (2FB.7C)4g
2.DECIMAL NUMBER SYSTEM:-

(a) Decimal to binary conversion:- In the conversion the integer number are converted to thedesired base using
successive division by the base or radix.

For example: (i) Convert (52)10 into binary.

(ii) Convert (105.15)4, into binary.

Solution:

Integer part Fraction part
21105 0.15x2=0.30
21652 —1 0.30x2=0.60
2126 —0 0.60x2=1.20
2113 —o0 0.20 x2=0.40
216 — 1 0.40x2=0.80
2]3 —0 0.80x2=1.60
211 —1

0o -1

Result of (105.15)1, is (1101001.001001),

Decimal to octal conversion:- To convert the given decimal integer number to octal,successively divide the given
number by 8 till the quotient is 0.

(i) Convert (378.93)4, into octal.

Solution:
81378 0.93x8=7.44
8l47 —2 0.44 x 8 =352
8l —7 0.52x8=4.16
0 —5 0.16x8=1.28

Result of (378.93)y, is (572.7341),

(b)Decimal to hexadecimal conversion:-

(i) Convert (2598.675),, into hexadecimal.

Solution:
Remainder
Decimal Hex Hex
16 | 2598 0.675x 16 =108 A
161 162 — 6 6 0.800 x 16=12.8 (5
6] 10 — 2 2 0.800 x 16 = 12.8 G
0 —10 A 0.800x 16=12.8 C

Result of (2598.675)y is (A26.ACCC)¢
3. OCTAL NUMBER SYSTEM:-

(a) Octal to binary conversion:- To convert a given a octal number to binary, replace eachoctal digit by its 3-
bit binary equivalent.

For example:
Convert (367.52), into binary.

Solution:

Given Octal number is 3 6 7 . 5 2
Convert each group octal =011 110 111 . 101 010
to binary

Result of (367.52)s is (011110111.101010),

(b) Octal to decimal conversion:- For conversion octal to decimal number, multiply each digitin the octal
number by the weight of its position and add all the product terms

For example: -
Convert (4057.06) 3 to decimal
Solution:
(4057.06) 4x8 +0x8°+5x8 +7x8"°+0x8 '+6x8?

2048 +0 + 40 + 7 + 0 +0.0937
(2095. 0937)10

o n

Result is (2095.0937),,

(c) Octal to hexadecimal conversion:- For conversion of octal to Hexadecimal, first convertthe given octal
number to binary and then binary number to hexadecimal

(4) HEXADECIMAL NUMBER SYSTEM :- (a)Hexadecimal to binary conversion:- For conversionof hexadecimal to
binary, replace hexadecimal digit by its 4 bit binary group

Convert (3A9E.BOD),, into binary.

Solution:
Given Hexadecimal number is 3 A 9 E . B 0 D
Convert each hexadecimal =0011 1010 1001 1110 . 1011 0000 1101

digit to 4 bit binary
Result of (3A9E.BOD)s is (0011101010011110.101100001101).

(b)Hexadecimal to decimal conversion:- For conversion of hexadecimal to decimal, multiplyeach digit in the

hexadecimal number by its position weight and add all those product terms.
Convert (AOF9.0EB),; to decimal

Solution:

(AOF9.0EB)4¢
40960 + 0 + 240 + 9 + 0 +0.0546 + 0.0026

(41209.0572) 1

Result is (41209.0572)4,

(10x 16°)+(0 x 162)+(15x 16") +(9 x 16°) +(0 x 16 ") +(14 x 16'%) +(11 x 167)

((c) Hexadecimal to Octal conversion:- For conversion of hexadecimal to octal, first convertthe given

hexadecimal number to binary and then binary number to octal

Arithmetic Operation-Addition, Subtraction, Multiplication, Division, 1’s & 2’scomplement of

Binary numbers& Subtraction using complements method

1. BINARY ADDITION:-

The binary addition rules are as follows carry . t carry

0+0=0; O0+1=1; 1+0=1; 1+41=10, SUM, 1+1+1=11

Add (100101); and (1101111),.
Solution :-

100101
+ 1101111
10010100

Result is (10010100);

2. BINARY SUBTRACTION:-

The binary subtraction rules are as follows
0-0=0; 1-1=0; 1-0=1; 0-1=11, withaborrowof1l

Substract (111.111), from (1010.01),.
Solution :-

1010.010
PR O % B
0010 .011
Result is (0010.011),

3. BINARY MULTIPLICATION:-

The binary multiplication rules are as follows0x0=0; 1x

1=1; 1x0=0; 0x1=0

Multiply (1101), by (110)..
Solution :-
1101
X 110
0000
1101
+ _1101
1001110
Result is (1001110),

4. BINARY DIVISION:-

The binary division is very simple and similar to decimal number system.So we have only 2

rules 0+1=0 1+1=1

110) 101101 (1111
- 110
1010
110

1001
110

110
110

000
Result is (111.1),

1’s COMPLEMENT REPRESENTATION :-

The 1's complement of a binary number is obtained by changing each 0 to 1 and each 1 toO.

Find (1100); 1's complement.

Solution :-
Given 1 1 0 0
1's complement is 0 0

Result is (0011),

2’s COMPLEMENT REPRESENTATION :-

The 2’s complement of a binary number is a binary number which is obtained by adding 1 tothe 1’s complement
of a number.

2’s complement = 1’s complement + 1

Find (1010), 2's complement.

Solution :-
Given 1 0 0
1's complement is 0 1 0 1
+ 1
2's complement 0 1 1 0

Result is (0110).

SIGNED NUMBER :-

In sign — magnitude form, additional bit called the sign bit is placed in front of the number.If the sign bit is O,
the number is positive. If it is a 1, the number is negative.

0 1010 0 1= +41
1

Sign bit
110100 1= -4
T

Sign bit

SUBSTRACTION USING COMPLEMENT METHOD :

1’s COMPLEMENT:-

In 1’s complement subtraction, add the 1's complement of subtrahend to the minuend. If there is a carry out,
then the carry is added to the LSB. This is called end around carry. If theMSB is 0, the result is positive. If the

MSB is 1, the result is negative and is in its 1‘s complement form. Then take its 1’s complement to get the
magnitude in binary.

Subtract (10000), from (11010); using 1's complement.

Solution:-
11010 11010 = 26
- 10000 => +_01111 (1'scomplement) =-16
Camy — 101001 +10
¥
01010 =+10
Result is +10

2’s COMPLEMENT:-

In 2's complement subtraction, add the 2’s complement of subtrahend to the minuend. If there is a carry out,
ignore it. If the MSB is O, the result is positive. If the MSB is 1, the resultis negative and is in its 2‘s complement
form. Then take its 2’s complement to get the magnitude in binary.

Subtract (1010100), from (1010100), using 2's complement.

Solution:-
1010100 1010100 = 84
- 1010100 => + 0101100 (2's complement) =- 84
10000000 (Ignore the carry) 0
= 0 (result = 0)

Hence MSB is 0. The answer is positive. So it is +0000000 = 0

Digital Code & its Types

DIGITAL CODES:-

In practice the digital electronics requires to handle data which may be numeric, alphabets and special
characters. This requires the conversion of the incoming data into binary formatbefore it can be processed.
There is various possible ways of doing this and this process is called encoding. To achieve the reverse of it, we
use decoders.

WEIGHTED AND NON-WEIGHTED CODES

There are two types of binary codes

1) Weighted binary codes : In weighted codes, for each position (or bit) ,there is specific weight attached. For
example, in binary number, each bit is assigned particular weight 2" where ‘n’ is the bit number for n =
0,1,2,3,4 the weights are 1,2,4,8,16 respectively. Example

- BCD

2) Non- weighted binary codes:

Non-weighted codes are codes which are not assigned with any weight to each digit position, i.e., each digit
position within the number is not assigned fixed value. Example:-Excess — 3 (XS -3) code and Gray codes

BINARY CODED DECIMAL (BCD):- BCD is a weighted code. In weighted codes, each successive digit from right
to left represents weights equal to some specified value and to get the equivalent decimal number add the
products of the weights by the corresponding binary digit. 8421 is the most common because 8421 BCD is the
most natural amongst theother possible codes.

BCD ADDITION:-

Addition of BCD (8421) is performed by adding two digits of binary, starting from least significant digit. In case
if the result is an illegal code (greater than 9) or if there is a carry outof one then add 0110(6) and add the
resulting carry to the next most significant.

Add 679.6 from 536.8 using BCD addition.

Solution:-

679.6 0110 0111 1001 . 0110 (679.6in BCD)
+ 5§36.8 =>+ 0101 0011 0110 . 1000 (536.8 in BCD)
1216.4 1011 1010 1111 . 1110 (All are illegal codes)

+ 0110 +0110 +0110 .+0110 (Add 0110 to each)
0001 0010 0001 0110 . 0100
1 2 1 6 = #4 (corrected sum = 1216.4)
Result is 1216.4

BCD SUBTRACTION:-

The BCD subtraction is performed by subtracting the digits of each 4 — bit group of the subtrahend from
corresponding 4 — bit group of the minuend in the binary starting from thelLSD. If there is no borrow from the
next higher group[then no correction is required. If there is a borrow from the next group, then 6 (0110) is
subtracted from the difference term of this group.

Subtract 147.8 from 206.7 using 8421 BCD code.

Solution:-
206.7 0010 0000 0110 . 0111 (206.7 in BCD)
= 1.4 7.8 =>- 0001 _0100 0111 . 1000 (147.8 in BCD)
58.9 0000 1011 1110 . 1111 (Borrows are present)

- 0110 -0110 .- 0110
0101 1000 . 1001
5 g8 . 9 (corrected difference = 58.9)

Result is (58.9)4¢

EXCESS THREE(XS-3) CODE:-

The Excess-3 code, also called XS-3, is a non- weighted BCD code. This derives it name from the fact that each

binary code word is the corresponding 8421 code word plus 0011(3). It isa sequential code. It is a self

complementing code.

Excess-3 code is non-weighted and self complementary code. A self complementary binary codes are always
compliment themselves. The complement of a binary number can be obtained from that number by replacing
0’s with 1’s and 1’s with 0’s. The sum of binary number and its complement is always equal to decimal 9. In
other words, the 1's complement of an excess-3 code is the excess-3 code for the 9’s complement of the
corresponding decimal number. For example, the excess-3 code for decimal number 5 is 1000 and 1’s

complement of 1000 is 0111, which is excess-3 code for decimal number 4, and it is 9’s complement of number
5.

ASCII CODE:-

The American Standard Code for Information Interchange (ASCII) pronounced as ‘ASKEE’ is widely used
alphanumeric code. This is basically a 7 bit code. The number of different bit patterns that can be created with
7 bits is 27 = 128 , the ASCII can be used to encode both the uppercase and lowercase characters of the
alphabet (52 symbols) and some special symbols in addition to the 10 decimal digits. It is used extensively for
printers and terminals that interface with small computer systems. The table shown below shows the ASCII
groups.

GRAY CODE:-

The gray code is a non-weighted code. It is not a BCD code. It is cyclic code because successive words in this
differ in one bit position only i.e it is a unit distance code. Gray codeis used in instrumentation and data
acquisition systems where linear or angular displacement is measured.

BINARY- TO — GRAY CONVERSION:-

If an n-bit binary number is represented by B, B, ----- B, and its gray code equivalentby G, Gny ----- G,
where B, and G, are the MSBs , then gray code bits are obtained from the binary code as follows
G, = B,
Gy = Bne B,
G, = B, ©B,

Where the symbol @ stands for Exclusive OR (X-OR)
GRAY-TO - BINARY CONVERSION:-

then binary bits are obtained from Gray bits as follows :
B, = Gy
Bn.| = Bn @ Gn-!

B1= 82 G)C';1

Boolean algebra, Boolean expressions, Demorgan’s Theorems.

BOOLEAN ALGEBRA INTRODUCTION:-
e Switching circuits are also called logic circuits, gates circuits and digital circuits.

e Boolean algebra is a system of mathematical logic. It is an algebraic system consisting of the set of
elements (0,1), two binary operators called OR and AND and unary operatorcalled NOT.
e It is the basic mathematical tool in the analysis and synthesis of switching circuits.
e It is a way to express logic functions algebraically.

AXIOMS AND LAWS OF BOOLEAN ALGEBRA:-
Axioms or postulates of Boolean algebra are set of logical expressions that are acceptedwithout proof and
upon which we can build a set of useful theorems.

Axiom1l: 0.0=0 Axiom5: 0+0=0 Axiom9: 1=0
Axiom2: 0.1=0 Axiom6: 0+1=1 Axiom 10: 0=1
Axiom3: 1.0=0 Axiom7: 1+0=1
Axiom4: 1.1=1 Axiom 8: 1+1=1

Complementation Laws:-
The term complement simply means to invert, i.e. to changes Os to 1s and 1s to 0s.The five laws of
complementation are as follows:

law1:0=1

law2:1=0

Law 3:ifA=0,then A= 1law 4: if A=

1,then A=0

Law 5: 4 = 0 (double complementation law)

OR Laws:-

The four OR laws are as followsLaw 1: A+ 0 =A
(Null law)

Law 2: A + 1 = 1(Identity law)Law 3: A+ A=A
law4: A+A =1

AND Laws:-

The four AND laws are as followsLaw 1: A. 0 =0 (Null
law)

Law 2: A . 1=A (Identity law)Law 3: A. A=A
law4:A.A=0

Commutative Laws:-

Commutative laws allow change in position of AND or OR variables. There are twocommutative laws.
law1l:A+B=B+Alaw2: A.B=B.A

Associative Laws:-

The associative laws allow grouping of variables. There are 2 associative laws.Law 1: (A+B) + C=

A+ (B+C)

Law 2: (A.B)C=A(B.C)

Distributive Laws:-

The distributive laws allow factoring or multiplying out of expressions. There aretwo distributive laws.
Law 1: A (B+ C) = AB + AC Law 2: A + BC = (A+B)

(A+C)

Proof:

RHS = (A+B) (A+C) = AA + AC + BA + BC

=A+AC+AB +BC

=A(1+C+B)+BC

=A.1+BC (1+C+B=1+B=1, FROMORLaw 2)

=A+BC=LHS

7. Redundant Literal Rule (RLR):-
law1l: A+ AB=A + BProof
A+AB=(A+A)(A+B)
=1. (A +B)
=A+B
Law 2: A(A + B) = ABProof
A(A+B)=AA +AB=0+AB=AB

8. ldempotence Laws:- Idempotence means same
value. Law 1:A. A=A
Law 2: A+A=A

9. Absorption Laws:-

There are two laws:

Law 1: A+A-B=A
Proof: A+A-B
=A(1+B)
=A-1=A
Law 2: A(A+B)=A
Proof : A(A+B)
=A-A+A-B
=A+AB
=A(1+B)
=A-1=A

12. De Morgan’s Theorem:-

De Morgan’s theorem represents two laws in Boolean algebra.
This law states that the complement of a sum of variables is equal to the product oftheir individual complements.

Law 1: A+B = AB

Proof — — [— —
A B |A+B | A+B A B A & |8
0 0 0 1 0 0 1 1 1
0 1 0 = 0 1 1 0 0
1 0 1 0 ! 9 0 9
1 1 1 0 1 1 0 0 0

law2: A.B=A+B
This law states that the complement of a product of variables is equal to the sum oftheir individual
complements.

Proof
A | B |AB|AB Al B | A |B|A+B
¢ 0 : 0 0 1 1 1
0 1 g ! = 0 1 1 0 1
L 9 0 1 1 0 0 1 1
: 1 y 0 1 1 0 0 0

Canonical and Standard Form

Canonical Form — In Boolean algebra, the Boolean function can be expressed as Canonical Disjunctive Normal
Form known as minterm and some are expressed as Canonical Conjunctive Normal Form known as maxterm.

In Minterm, we look for the functions where the output results in “1” while in Maxterm we look for functions
where the output results in “0”.

We perform the Sum of minterm also known as the Sum of products (SOP).
We perform Product of Maxterm also known as Product of sum (POS).

Advantages of Canonical Form:

Uniqueness: The canonical form of a boolean function is unique, which means that there is only one possible
canonical form for a given function.

Clarity: The canonical form of a boolean function provides a clear and unambiguous representation of the
function.

Completeness: The canonical form of a boolean function can represent any possible boolean function, regardless
of its complexity.

Disadvantages of Canonical Form:

Complexity: The canonical form of a boolean function can be complex, especially for functions with many
variables.

Computation: Computing the canonical form of a boolean function can be computationally expensive, especially
for large functions.

Redundancy: The canonical form of a boolean function can be redundant, which means that it can contain
unnecessary terms or variables that do not affect the function.

Advantages of Standard Form:

Simplicity: The standard form of a boolean function is simpler than the canonical form, making it easier to
understand and work with.

Efficiency: The standard form of a boolean function can be implemented using fewer logic gates than the
canonical form, which makes it more efficient in terms of hardware and computation.

Flexibility: The standard form of a boolean function can be easily modified and combined with other functions to
create new functions that meet specific design requirements.

Disadvantages of Standard Form:

Non-uniqueness: The standard form of a boolean function is not unique, which means that there can be multiple
possible standard forms for a given function.

Incompleteness: The standard form of a boolean function may not be able to represent some complex boolean
functions.

Ambiguity: The standard form of a boolean function can be ambiguous, especially if it contains multiple
equivalent expressions.

Represent Logic Expression: SOP & POS formsSUM - OF -

PRODUCTS FORM:-
e This is also called disjunctive Canonical Form (DCF) or Expanded Sum of Products Formor Canonical Sum
of Products Form.
¢ In this form, the function is the sum of a number of products terms where eachproduct term
contains all variables of the function either in complemented or uncomplemented form.
The or product term which contains all the variables of the functions either incomplemented
uncomplemented form is called a minterm.
e The minterm is denoted as mo, m1, m2 An ‘n’ variable function can have 2"
minterms.
f(A.B,.C)=Yym(1, 2, 3,5)
PRODUCT- OF - SUMS FORM:-
e This form is also called as Conjunctive Canonical Form (CCF) or Expanded Product - of
— Sums e This is by considering the combinations for which f =0
e Each term is a sum of all the variables.
The sum term which contains each of the ‘n’ variables in either complemented oruncomplemented form is
called a maxterm.
e Maxterm is represented as M0, M1, M2, f(A,B,C)=NM (O,
4,6,7)

Logic gates: AND, OR, NOT, NAND, NOR, Exclusive-OR, Exclusive-NOR--Symbol, Function,
expression, truth table & timing diagram

LOGIC GATES:-

e Logic gates are the fundamental building blocks of digital systems.

e There are 3 basic types of gates AND, OR and NOT.

e Logic gates are electronic circuits because they are made up of a number of electronicdevices and
components.

e Inputs and outputs of logic gates can occur only in 2 levels(logic 1, logic 0). These twolevels are termed
HIGH and LOW, or TRUE and FALSE, or ON and OFF

e The table which lists all the possible combinations of input variables and thecorresponding

output of any logic circuit/device, called a truth table.

DIFFERENT TYPES OF LOGIC GATES

NOT GATE (INVERTER):-
e A NOT gate, also called and inverter, has only one input and one output.

e It is a device whose output is always the complement of its input.
e The output of a NOT gate is the logic 1 state when its input is in logic 0 state and thelogic 0 state when
its inputs is in logic 1 state.

IC No. :- 7404
Logic Symbol Truth table
INPUT OUTPUT
A out A A
0 1
1 0
AND GATE:-

e An AND gate has two or more inputs but only one output.
e The output is logic 1 state only when each one of its inputs is at logic 1 state.
e The output is logic 0 state even if one of its inputs is at logic O state.

Truth Table
IC No.:- 7408 OUTPUT
Logic Symbol A B Q=A.B
0 0)
A 0 1 0
) Q 1 0 0
B 1 1 1

OR GATE:-

e An OR gate may have two or more inputs but only one output.

e The output is logic 1 state, even if one of its input is 1

e The output is logic O state, only when each one of its inputs is in logic state.

Truth Table

IC No.:- 7432 INPUT OUTPUT
Logic Symbol - B G+
o o 0
A 0 1 1
Q 1 0 1
B 1 1 1
NAND GATE:-

e NAND gate is a combination of an AND gate and a NOT gate.
e The output is logic 0 when each of the input is logic 1 and for any other combinationof inputs, the
output is logic 1.

IC No.:- 7400 two input NAND gate
Truth Table

s INPUT OuUTPUT
Logic Symbol A B Q= A B
O (0] 1
o 1 1
A —
Q 1 (s} 1
B —_— 1 1 (8]

NOR GATE:-

* NOR gate is a combination of an OR gate and a NOT gate.

e The output is logic 1, only when each one of its input is logic 0 and for any othercombination of
inputs the output is a logic O level.

IC No.:- 7402 two input NOR gate
Truth Table

INPUT OuTPUT

Logic Symbol A B Q- A+B
0 o} 1
A o 1 0
Q 1 0 0
b 1 1 0

EXCLUSIVE — OR (X-OR) GATE
e An X-OR gate is a two input, one output logic circuit.

e The output is logic 1 when one and only one of its two inputs is logic 1. When both theinputs is logic 0 or
when both the inputs is logic 1, the output is logic 0.

IC No.:- 7486
Logic Symbol Truth Table
INPUT OUTPUT
A | B |[a=ADB
0 0 0
INPUTS are Aand B 0 1 1
OUTPUTisQ=A @ B 1 0 1
=AB+AB 1 1 0

EXCLUSIVE — NOR (X-NOR) GATE
e An X-NOR gate is the combination of an X-OR gate and NOT gate

e An X-NOR gate is a two input, one output logic circuit.
The output is logic 1 only when both the inputs are logic 0 or when both the inputs is 1.

e The output is logic 0 when one of the inputs is logic 0 and other is 1
IC No.:- 74266

Logic Symbol
A INPUT OUTPUT
A B OUT =A XNOR B
out
B 0 (o] 1
0 1 0
—_— 1 0 0
OUT=A B+A B
1 1 1

=AXNORB

Universal Gates & its Realisation

UNIVERSAL GATES:-
There are 3 basic gates AND, OR and NOT, there are two universal gates NAND and NOR.Both NAND and

NOR gates can perform all logic functions i.e. AND, OR, NOT, EXOR and EXNOR.

NAND GATE:-
=D

a) Inverter from NAND gate
b) AND gate from NAND gate

Input =A
Output Q= A

Input s are A and B
OutputQ = A.B

c) OR gate from NAND gate R _‘:% = i
] _ A+B=Q
Q
Inputs are Aand B 8|
Output Q = A+B [
d) NOR from NAND
Inputs are A and B
Output Q = A+B o R

Inputs are Aand B
QuiputQ=AB+ AB

¢) EX-OR gate from NAND gate /Sgﬁb
’ X

®) EXORC o E£x.NOR gate From NAND gate

Inputs a1
Output € Inputs are Aand B

OutputQ=AB+AB

NOR GATE:-
a) Inverter from NOR gate
Input =A
Output Q= A

b) AND gate from NOR gate
Inputs are Aand B

OutputQ = A.B

c) OR gate from NOR gate

Inputs are A and B
Output Q = A+B

A E b—{ E b—Q
B

d) NAND gate from NOR gate

Inputs are A and B
OutputQ = A.B

0

e) EX-OR gate from NOR gate

Inputs are Aand B
OutputQ=AB + AB

e) EX-OR gate from NOR gate

Inputs are Aand B
OutputQ=AB + AB

A

f) EX-NOR gate From NOR gate

Inputs are Aand B
OutputQ=AB+AB

3 r\\ + | : '\—\0 L XNOR M

—

[a— -

Unit-2: Gate-Level Minimization

Map Method — Four-Variable K-Map — Product-of-Sums Simplification — Don’t-Care Conditions — NAND and NOR

Implementation — Other Two-Level Implementations — Exclusive-OR Function — Hardware Description
Language

KARNAUGH MAP OR K- MAP:-

The simplification of Boolean expressions using Boolean algebraic rules is not unique and most of the cases,
the resultant expression is not in minimal form. In order to get the uniqueness and final minimal form, K-map

technique will be used.
e The K- map is a chart or a graph, composed of an arrangement of adjacent cells, each representing a
particular combination of variables in sum or product form
. ® The K- map is systematic method of simplifying the Boolean expression.
Mapping of SOP Expression:-

e The n variable K-map has 2" squares. These squares are called cells.
oA ‘1’ is placed in any square indicates that corresponding minterm is included in the output expression,

and a 0 or no entry in any square indicates that the corresponding minterm does not appear in the
expression for output.

2 Variable K-map

There is a total of 4 variables in a 2-variable K-map. There are two variables in the 2-variable K-map. The
following figure shows the structure of the 2-variable K-map:

Z
» 0 1
0 mn m1
1
L Lo

o Inthe above figure, there is only one possibility of grouping four adjacent minterms.

o The possible combinations of grouping 2 adjacent minterms are {(m,, m.), (M., ms), (Mo, M,) and (m,, my)}.

Karnaugh map (3 & 4 Variables) & Minimization of logicalexpressions,

don’t care conditions
3-variable K-map

The 3-variable K-map is represented as an array of eight cells. In this case, we used A, B, and C for the
variable. We can use any letter for the names of the variables. The binary values of variables A and B are along the
left side, and the values of C are across the top. The value of the given cell is the binary values of A and B at left side
in the same row combined with the value of C at the top in the same column. For example, the cell in the upper left

corner has a binary value of 000, and the cell in the lower right corner has a binary value of 101.

00 001 ABC ABC
01 01| ABC ABC
11 1 ABC ABC
10 10| ABC ABC

The 4-Variable Karnaugh Map

The 4-variable K-map is represented as an array of 16 cells. Binary values of A and B are along the left side,
and the values of C and D are across the top. The value of the given cell is the binary values of A and B at left side in
the same row combined with the binary values of C and D at the top in the same column. For example, the cell in the

upper right corner has a binary value of 0010, and the cell in the lower right corner has a binary value of 1010

CcD CD
AB 00 01 1 10 AB 00 01 1 10
00 ool ABCD | ABCD | ABCD | ABCD
01 01| ABCD | ABCD | ABCD | ABCD
1 11| ABCD | ABCD | ABCD | ABCD
10 10| ABCD | ABCD | ABCD | ABCD

Simplification of boolean expressions using Karnaugh Map

As we know that K-map takes both SOP and POS forms. So, there are two possible solutions for K-map, i.e.,
minterm and maxterm solution. Let's start and learn about how we can find the minterm and maxterm solution
of K-map.

Minterm Solution of K Map
There are the following steps to find the minterm solution or K-map:

Step 1: Firstly, we define the given expression in its canonical form.

Step 2: Next, we create the K-map by entering 1 to each product-term into the K-map cell and fill the remaining
cells with zeros.

Step 3: Next, we form the groups by considering each one in the K-map.

1)

(1 1)] 0 0

Notice that each group should have the largest number of 'ones'. A group cannot contain an empty cell or cell
that contains 0.

(o 1 1 0) 0

Incorrect

In a group, there is a total of 2n number of ones. Here, n=0, 1, 2, ...n.

Example: 20=1, 21=2, 22=4, 23=8, or 24=16.

W a_[1)

Correct

o [C1 [1]1) 0

Incorrect

We group the number of ones in the decreasing order. First, we have to try to make the group of eight, then for
four, after that two and lastly for 1.

(1 1 | 1 1) (1 1 | 1 1]
(1 1 11 [1) L1 1 |1 1 J
Incorrect Correct

Incorrect

In horizontally or vertically manner, the groups of ones are formed in shape of rectangle and square. We cannot
perform the diagonal grouping in K-map.

Q 0o | o o | 1) o | o
N
(1 1 15) 0 0 | (1 1) | 0

Correct

We can consider the 'don't care condition' only when they aid in increasing the group-size. Otherwise, 'don't
care' elements are discarded.

(1 (1 | 1] | 1)
pllx e
¥ Ny

Neglect Consider

Step 4:
In the next step, we find the boolean expression for each group. By looking at the common variables in cell-labeling, we define the groups in terms
of input variables. In the below example, there is a total of two groups, i.e., group 1 and group 2, with two and one number of 'ones'.

In the first group, the ones are present in the row for which the value of A is 0. Thus, they contain the complement of variable A. Remaining two
‘'ones' are present in adjacent columns. In these columns, only B term in common is the product term corresponding to the group as A'B. Just like
group 1, in group 2, the one's are present in a row for which the value of A is 1. So, the corresponding variables of this column are B'C'. The overall
product term of this group is AB'C".

v N
14 10 Group1
00 5 01 1 1 5 1 2/P
of 0 | 0 [(1 1)

1 @ 0 0 0
N\

Group 2

BC

Step 5:

Lastly, we find the boolean expression for the Output. To find the simplified boolean expression in the SOP form, we combine the product-terms of
all individual groups. So the simplified expression of the above k-map is as follows:

A'+AB'C'
Let's take some examples of 2-variable, 3-variable, 4-variable, and 5-variable K-map examples.

Example 1: Y=A'B' + AB+AB

A 0 1

ol (1 1)
0 1

11 1
1

Simplified expression: Y=A'+B

Example 2: Y=A'B'C'+A' BC'+AB' C'+AB' C+ABC'+ABC

Simplified expression: Y=A+C'

Example 3: Y=A'B'C' D'+A' B' CD'+A' BCD'+A' BCD+AB' C' D'+ABCD'+ABCD

ﬁD 00 01 11 10
wl 1) 0 |0 |(1

1
01 0 ‘ 1 1 \ 0
4 5 7 6
1 I
13
9

a0 | L1
10J 0

1 10

Simplified expression: Y=BD+B'D'

Maxterm Solution of K-Map

To find the simplified maxterm solution using K-map is the same as to find for the minterm solution. There are some

minor changes in the maxterm solution, which are as follows:

1. We will populate the K-map by entering the value of 0 to each sum-term into the K-map cell and fill the

remaining cells with one's.
2. We will make the groups of 'zeros' not for ‘ones'.
3. Now, we will define the boolean expressions for each group as sum-terms.

4. At last, to find the simplified boolean expression in the POS form, we will combine the sum-terms of all

individual groups.

Let's take some example of 2-variable, 3-variable, 4-variable and 5-variable K-map examples

Example 1: Y=(A'+B')+(A'+B)+(A+B)

Y=(A'+B)+(A'+B)+(A+B)

B
A 0 1

ol (0,10

0 1

Simplified expression: A'B

Example 2: Y=(A+B+C)+(A+B'+C)+(A'+B'+C)+(A'+B' + C)

BC
A 00 01 1 10

1°%(0 " 0)3 1 °

1% 1% (0 7] 0)°

Simplified expression: Y=(A + C') .(A' + B")

Implementation of NOR Gate from NAND Gate

Following is the implementation of NOR gate from NAND gate. First, we produce complements of inputs and
further implement NOR logic.

Logic Diagram for Implementation of NOR Gate from NAND Gate
Below is the logic diagram for the implementation of NOR gate from NAND gate.

To Implement NOR Gate as a NAND Gate,We will Take two NAND gate and connect its two terminal together which will act

as Inverter.

Input A and B are Fed to the NAND Gate having both Input terminal Together.So, the Output of Input A NAND gate Will give

A’ ,Similarly B will give B’.
Then Both this Output is Fed to the NAND gate which will give Output as (A'B’)’.

Finally,a NAND gate is connected to this Output Having Both the Input Terminals Together, which will give output as
A’.B’=(A+B)’ which is the Output of NOR gate.

T .. (ABY [. AB=(A+B)

_)

Implementation of OR Gate from NAND Gate

The Implementation of OR Gate from NAND Gate is executed by using De Morgan’s theorem, which asserts that
the complement of the AND operation is equivalent to the NAND operation, so that it can be used to construct
an OR gate by using NAND gates. So that We can effectively execute the functionality of an OR gate by
combining numerous NAND gates in a particular arrangement. So that we can implement an OR Gate by using
NAND Gates.

https://www.geeksforgeeks.org/de-morgans-law/

Djﬁ'l.el)l:ﬁ_g

-

What is XOR Gate?

XOR gate is a logic gate that results in an output high with an odd nhumber of high inputs. In other words, if the
number of 1’s is odd in the input then, the output of XOR is 1. XOR gate gives output 1 when all the inputs are
different. The XOR is represented as .

A
Y=AXORB
B
Truth Table
B (Input) B (Input 2) Y=A®B
0 0 0
0 1 1
1 0 1
1 1 0

XOR Gate
In the above table if the inputs are different then the output is 1 otherwise 0.

Expression for 2-Input XOR Gate

We get the expression of XOR gate as sum of products of complement of first input with second input
and first input with complement of second input. From the above truth table, the expression of XOR gate
is:

A @B=AB+AB’

https://www.geeksforgeeks.org/xor-gate/

