
Embedded Application Development
NEP- Semester - IV

Year II

CourseCode:CSCS209
Course Title:
 Embedded Application Development

Credits 4

Sem. IV
Hours 75

Category C

Course
Prerequisites
, if
Any

 Microprocessor & Microcontrollers introduction
 Assembly Language Programming
 Operating System and Computer Organization Concepts

Internal
Assessment
Marks:25

EndSemesterMarks:75
Duration of ESA (Theory): 03 hrs.
Duration of ESA(Practical):03hrs.

Course
Outcomes

 Understand the basics of Embedded Systems
 Appreciate the application domains of Embedded Systems
 Gain proficiency in programming embedded systems
 Exploreinterfacingtechniquesforsensors,actuators,andotherperipheraldevice

s commonly used in embedded applications
 Developskillsindesigning,implementing,anddebuggingembeddedsoftware

Unit No. Course Content Hour
s

Theory Component

Unit-I

Introduction
Embedded Systems and General-purpose Computer Systems – History
– Classifications – Applications – Purpose of Embedded Systems –
Characteristics and Quality Attributes

9

Unit-II

Embedded Systems
Application specific – washing machine – domain specific –
automotive Embedded Hardware: Memory – I/O – Interrupt –
Processors – External peripherals
Peripherals: Control and Status Registers– Device Driver– Timer Driver–
Watchdog Timers

9

Unit-III

Microcontrollers
Microcontrollers and Embedded processors –Overview of8051
family.8051 hardware – I/O pins – Ports – Circuits – External Memory
Programming: Data Types– I/O Programming–Logicoperations–Data
conversion Programs

9

Unit-IV

DesigningEmbeddedSystemwith8051Microcontroller
Factorstobeconsideredinselectingacontroller–8051Microcontroller–
Designingwith8051
Programming: Structure of embedded program – infinite loop –
compiling, linking & debugging

9

Unit-V

Real Time Operating System(RTOS)
Operating system basics–Types of OS–Real-Time Characteristics–
Selection Process of an RTOS
Design and Development: Embedded system development
Environment – IDE – types of file generated, disassembler – de-
compiler – simulator –
emulatoranddebugging,embeddedproductdevelopmentlife-
cycle,trends in embedded industry

9

Practical Component

Exercises

1. Configuretimercontrolregistersof8051anddevelopa program to
generate given time delay

2. Port I/O:Useoneofthefourportsof8051forO/P
3. interfaced to eight LED’s. Simulate binary counter (8 bit) on

LED’s
4. Serial I/O: Configure 8051 serial port for asynchronous serial

communication with serial port of PCexchange text messages

30

 to PC and display on PC screen. Signify end of message by carriage
return

5. Interface 8051 with D/A converter and generate square wave of
given frequency on oscilloscope

6. Interface the microcontroller with external devices (e.g., sensors,
displays, or other microcontrollers) using serial communication.
Implement simple data exchange protocols and verify
communication

7. Generate PWM signals to control the brightness of LEDs or the
speed of a motor. Experiment with different duty cycles and
frequencies

8. Write programs to store and retrieve data from non-volatile
memory (e.g., EEPROM or Flash). Implement dynamic memory
allocation techniques using RAM

Recommended Learning Resources

Print Resources

1. Shibu KV, "Introduction to Embedded Systems "Second Edition, Tata McGraw
Hill, 2017.

2. Rajkamal, “Embedded Systems-Architecture, Programming and Design",
ThirdEdition,McGrawHillEducation,2008.

SyllabusDesign:Dr.S.K.V.Jayakumar,Professor,PUDoCS

Unit-1 Introduction

Embedded Systems and General-purpose Computer Systems – History
– Classifications – Applications – Purpose of Embedded Systems –
Characteristics and Quality Attributes.

What is Embedded System?

An Electronic / Electromechanical system which is designed to perform a
specific function and is a combination of both hardware and firmware (Software)

E.g. Electronic Toys, Mobile Handsets, Washing Machines, Air Conditioners,
Automotive Control Units, Set Top Box, DVD Player etc…

Embedded Systems are:
 Unique in character and behavior
 With specialized hardware and software

General-Purpose Computing System vs. Embedded System

General-Purpose Computing System Embedded System

A system which is a combination of generic

hardware and General Purpose Operating System

for executing a variety of applications

A system which is a combination of special

purpose hardware and embedded OS for

executing a specific set of applications

Contains a General-Purpose Operating System (GPOS). It may or may not contain an operating system
for functioning.

Applications in a General-Purpose Computing
System are alterable (programmable) by the user.
It is possible for the end user to re-install the
Operating System and add or remove user
applications.

The firmware of an Embedded System is

pre-programmed and is non-alterable by the

end-user

Performance is the key deciding factor in selecting
a General-Purpose Computing System. The rule
followed is: "Faster is Better."

Application specific requirements (like

performance, power requirements, memory

usage etc) are the key deciding factors

Less or not at all tailored toward reduced

operating power requirements, but they offer

options for different levels of power

management.

Highly tailored to take advantage of the

power-saving modes supported by hardware

and the Operating System.

Response requirements are not time critical Execution behavior in Embedded Systems is

deterministic for certain types of systems,

such as Hard Real-Time systems.

Execution behavior if the systems need not be
deterministic

Execution behavior is deterministic for

certain type of embedded systems like „Hard

Real Time‟ systems

History of Embedded Systems

By the late 1960s and early 1970s, the price of integrated circuits dropped and
usage surged. The first microcontroller was developed by Texas Instruments in 1971.
The TMS1000 series, which became commercially available in 1974, contained a 4-bit
processor, read-only memory and random-access memory.

Intel Microcontrollers 8048 was introduced in 1976 and was the first of Intel’s

Micro Controller. It was used as the processor in the PC Keyboard of IBM.
In 1978 Motorola Controllers was introduced as 6801, and 6811 Micro

controller introduced at 1985 (8-bit CPU, 8K ROM, 256 Bytes RAM, 512Bytes
EEPROM)

PIC(Programmable Interface Controller) is a family of micro controllers made
by Microchip Technology. The original PIC 1650 was developed by General
Instruments.

Atmel introduced its first Flash Microcontroller AT89C51 in 1993, based on
the 8051 core. Low power, high performance CMOS 8-bit MC with 4Kbytes of flash
programmable and erasable read only memory.

Classification based on Complexity & Performance

Small Scale: The embedded systems built around low performance and

low cost 8 or 16 bit microprocessors/ microcontrollers. It is suitable for simple
applications and where performance is not time critical. It may or may not
contain OS.

Medium Scale: Embedded Systems built around medium performance,
low cost 16 or32 bit microprocessors / microcontrollers or DSP (Digital Signal
Processing). These are slightly complex in hardware and firmware. It may
contain GPOS (General-Purpose Operating System) /RTOS (Real-Time
Operating System, example FreeRTOS).

 Large Scale/Complex: Embedded Systems built around high performance
32 or 64 bit RISC processors/controllers, RSoC or multi-core processors and
PLD. It requires complex hardware and software. These system may contain
multiple processors/controllers and co-units/hardware accelerators for
offloading the processing requirements from the main processor. It contains
RTOS for scheduling, prioritization and management.

3. Embedded Systems-Classification Based on deterministic behavior: It is
applicable for Real Time systems. The application/task execution behavior for
an embedded system can be either deterministic or non-deterministic
These are classified into two types

a. Soft Real time Systems: Missing a deadline may not be critical and can be
tolerated to a certain degree

b. Hard Real time systems: Missing a program/task execution time dead
line can have catastrophic consequences (financial, human loss of life,
etc.)

4. Embedded Systems-Classification Based on Triggering: These are
classified into two types

a) Event Triggered: Activities within the system(e.g., taskrun-times) are
dynamic and depend upon occurrence of different events .

b) Time triggered: Activities within the system follow a statically computed

schedule (i.e., they are allocated time slots during which they can take
place) and thus by nature are predictable.

Major Application Areas of Embedded Systems

1. Consumer Electronics: Camcorders, Cameras, etc.

Embedded systems are used in devices like camcorders, digital cameras, and

gaming consoles to enhance performance and optimize power consumption

2. Household Appliances: Television, DVD players, Washing machine, Fridge,

Microwave Oven, etc.

Appliances like TVs, DVD players, washing machines, refrigerators, and

microwave ovens use embedded systems for automation, user control, and energy

efficiency.

3. Home Automation and Security Systems: Air conditioners, Sprinklers, Intruder

detection alarms, Closed Circuit Television (CCTV) Cameras, Fire alarms, etc.

Embedded systems enable smart home technologies, such as air conditioners,

sprinklers, CCTV cameras, fire alarms, and intrusion detection alarms, for

enhanced safety and convenience.

4. Automotive Industry: Anti-lock Braking Systems (ABS), Engine Control, Ignition

Systems, Automatic Navigation Systems, etc.

Modern vehicles rely on embedded systems for Anti-lock Braking Systems (ABS),

Engine Control Units (ECUs), Ignition Systems, and GPS-based Navigation Systems

to improve safety and performance.

5. Telecom: Cellular Telephones, Telephone switches, Handset Multimedia

Applications, etc.

Devices like mobile phones, telephone switches, and multimedia handsets use

embedded systems to ensure efficient communication and signal processing.

6. Computer Peripherals: Embedded systems control printers, scanners, and fax

machines, allowing them to perform automated tasks with high accuracy.

7. Computer Networking Systems:

Network equipment like routers, switches, hubs, and firewalls use embedded

systems for managing data traffic and ensuring secure communication.

8. Healthcare:

Medical equipment such as ECG and EEG machines, MRI scanners, and infusion

pumps use embedded systems for real-time monitoring and diagnosis.

9. Measurement & Instrumentation:

Devices like digital multimeters, digital storage oscilloscopes (CROs), and logic

analyzers use embedded systems for precision measurement and data analysis.

10. Banking & Retail:

ATMs, currency counters, and Point-of-Sale (POS) systems use embedded technology

for secure and fast financial transactions.

11. Card Readers:

Barcode scanners, smart card readers, and handheld payment devices use

embedded systems for authentication and secure data processing.

Each Embedded Systems is designed to serve the purpose of anyone
or a combination of the following tasks.

o Data Collection/Storage/Representation

o Data Communication

o Data(Signal)Processing

o Monitoring

o Control

o Application Specific User Interface

Purpose of Embedded Systems

1. Data Collection/Storage/Representation:-

 Performs acquisition of data from the external world.

 The collected data can be either analog or digital

 Data collection is usually done for storage, analysis, manipulation and

transmission

 The collected data may be stored directly in the system or may be

transmitted to some other systems or it may be processed by the system
or it may be deleted instantly after giving a meaningful representation

2. Data Communication:-

Embedded Data communication systems are deployed in applications ranging
from complex satellite communication systems to simple home networking
systems

Embedded Data communication systems are dedicated for data
communication

The data communication can happen through a wired interface (like Ethernet,
RS-232C/USB/IEEE1394 etc) or wireless interface (like Wi-Fi, GSM,/GPRS,
Bluetooth, ZigBee etc) Network hubs, Routers, switches, Modem set care
Typical examples for dedicated data transmission embedded systems

3. Data (Signal) Processing

Embedded systems with Signal processing functionalities are employed
in applications demanding signal processing like Speech coding, synthesis,
audio video codec, transmission applications etc
Computational intensive systems

Employs Digital Signal Processors(DSPs)

4. Monitoring

 Embedded systems in this category are specifically designed for monitoring

purposes.

 They are used to determine the state of certain variables using input sensors.

 They cannot impose control over the variables.

 A typical example is the Electrocardiogram (ECG) machine, which monitors a

patient’s heartbeat.

 The sensors used in ECG are different electrodes connected to the patient’s body.

 Measuring instruments like Digital CRO, Digital Multimeter, and Logic Analyzer,

used in control and instrumentation applications, are also examples of embedded

systems for monitoring purposes.

5. Control

 Embedded systems with control functionalities are used to impose control over

variables based on changes in input variables.

 These systems contain both sensors and actuators.

 Sensors are connected to the input port to detect changes in the environmental or

measured variable.

 Actuators are connected to the output port and controlled based on input changes to

adjust the controlled variable to a specified range.

 A common example is an air conditioner, which controls room temperature.

 The air conditioner contains:

o A temperature-sensing element (sensor), such as a thermistor.

o A handheld unit to set the desired temperature.

o An air compressor unit, which acts as the actuator.

o The compressor is controlled based on the difference between the current

room temperature and the user-set desired temperature.

Application-Specific User Interface

 Embedded systems designed for a specific application.

 Contains an Application-Specific User Interface (rather than a general standard UI)

such as keyboards, display units, etc.

 Aimed at a specific target group of users.

 Examples include:

o Mobile handsets

o Control units in industrial applications

Characteristics of Embedded Systems

Embedded systems possess certain specific characteristics, and these are unique to each

embedded system:

1. Application and Domain-Specific

2. Reactive and Real-Time

3. Operates in Harsh Environments

4. Distributed

5. Small Size and Weight

6. Power Concerns

7. Single-Functioned

8. Complex Functionality

9. Tightly-Constrained

10. Safety-Critical

1. Application and Domain-Specific

 Each embedded system is designed to perform a specific function and cannot be

used for any other purpose.

 Example:
o The embedded control unit of a microwave oven cannot be replaced with an

air conditioner’s control unit because both are specifically designed to

perform different tasks.

2. Reactive and Real-Time

 Embedded systems (E.S) constantly interact with the real world through sensors and

user-defined input devices connected to the input port.

 Any changes in the real world are detected by sensors/input devices in real-time,

and the control algorithm reacts accordingly.

 E.S produce output changes in response to input changes, making them reactive

systems.

 Real-time system operation means the system’s response time must be

deterministic (i.e., it must respond in a known amount of time).

 Example:
o Mission-critical systems like flight control systems and Anti-lock Braking

Systems (ABS) are real-time systems.

3. Operates in Harsh Environments

 The design of an embedded system should consider the operating conditions of its

deployment area.

 Example:

o If the system is deployed in a high-temperature zone, all components should

be high-temperature grade.

o Systems in high-shock environments should have shock absorption

mechanisms.

4. Distributed

 Embedded systems may be part of a larger system and function as interconnected

units.

 Multiple embedded systems together form a single large control unit.

 Example:
o An automatic vending machine consists of a card reader, vending unit,

and other independent embedded units, all working together for vending

operations.

5. Small Size and Weight

 Product aesthetics (size, weight, shape, style) are important in product selection.

 Compact devices are more convenient to handle than bulky products.

6. Power Concerns

 Power management is an essential factor in embedded system design.

 The system should be designed to minimize heat dissipation for better efficiency.

7. Single-Functioned

 Embedded systems are dedicated to performing a single function efficiently.

8. Complex Functionality

 Some embedded systems run sophisticated or multiple algorithms to perform

complex tasks.

9. Tightly-Constrained

 Embedded systems must meet strict constraints such as low cost, low power

consumption, small size, and fast processing.

10. Safety-Critical

 Safety-critical embedded systems must not endanger human life or the

environment.

 Example:
o Medical devices, automotive safety systems, and nuclear plant control

systems.

Quality Attributes of Embedded Systems

2.1. Performance

 The system should execute tasks quickly and efficiently.
 Example: A real-time video encoder in a CCTV system must process frames

with minimal delay.

2.2. Real-Time Responsiveness

 The system must meet strict timing constraints for critical applications.
 Example: Anti-lock Braking System (ABS) must respond within milliseconds.

2.3. Reliability & Fault Tolerance

 Must work without failure for extended periods, often in harsh
environments.

 Example: A satellite control system should function for years without
rebooting.

2.4. Power Efficiency

 Optimized for low power consumption, especially in battery-powered
devices.

 Example: IoT sensors should last years on a small battery.

2.5. Security

 Embedded systems need protection against cyber threats and unauthorized
access.

 Example: Smart home security systems use encryption to prevent hacking.

2.6. Maintainability & Upgradability

 Should support firmware updates for bug fixes and new features.
 Example: Smartphones receive OTA (Over-The-Air) firmware updates.

2.7. Scalability

 Ability to expand functionality without redesigning the entire system.
 Example: A modular embedded system can add support for new sensors.

2.8. Cost-Effectiveness

 Must balance performance and cost for mass production.
 Example: Consumer electronics (e.g., smart TVs) use cost-optimized

embedded chips.

Unit - II
Application specific – washing machine – domain specific – automotive

Embedded Hardware: Memory – I/O – Interrupt – Processors – External
Peripherals: Control and Status Registers– Device Driver– Timer Driver–
Watchdog Timers

APPLICATION-SPECIFIC EMBEDDED SYSTEM: WASHING MACHINE

A washing machine is an example of an application-specific embedded system, meaning it

is designed for a specific function—washing clothes. It cannot be reprogrammed for other

tasks like an air conditioner or microwave oven.

How Embedded Systems Work in a Washing Machine

Key Components of an Embedded System in a Washing Machine

An embedded system in a washing machine consists of the following components:

 Microcontroller: Acts as the brain of the washing machine, controlling all

operations.

 Sensors: Used to monitor various parameters (e.g., water level, temperature, load

balance).

 Actuators: Components like motors and valves that execute operations.

 Memory (ROM & RAM): Stores the washing programs and temporary data.

 Display & User Interface: Enables users to select modes and receive status updates.

 Communication Interfaces: Some modern machines support IoT (Wi-Fi/Bluetooth)

for remote control.

Working of an Embedded System in a Washing Machine

The embedded system ensures efficient washing by controlling different stages:

Step 1: User Input & Program Selection

 The user selects the desired wash cycle (e.g., delicate, normal, heavy).

 The microcontroller reads the input and loads the corresponding washing program

from memory.

Step 2: Water Intake Control

 The water level sensor detects water levels.

 The microcontroller signals the inlet valve to open and fill the drum to the required

level.

Step 3: Temperature Regulation

 If the program requires warm water, the temperature sensor monitors the water.

 The heating element activates if needed and stops once the set temperature is reached.

Step 4: Motor Control for Washing

 The microcontroller controls the motor, adjusting speed and direction for efficient

washing.

 Load sensors ensure even distribution of clothes to prevent imbalance.

Step 5: Rinsing Process

 Once washing is complete, the system drains dirty water.

 Fresh water is added, and the drum rotates to rinse clothes.

Step 6: Spinning & Drying

 The drum spins at high speed to remove excess water.

 Sensors monitor vibration and balance, adjusting speed if necessary.

Step 7: Completion & User Notification

 The embedded system signals the end of the cycle.

 The display shows the remaining time, and a buzzer or LED indicates completion.

Why It’s an Application-Specific Embedded System?

 Designed only for washing clothes (not programmable for other tasks).

 Contains pre-defined wash programs controlled by an embedded microcontroller.

 Uses specific sensors and actuators to automate washing.

 Ensures safety & efficiency with programmed operations.

Thus, the washing machine is a perfect example of an application-specific embedded

system that automates the washing process with minimal user intervention.

Automotive Embedded Hardware: Overview

Automotive embedded systems rely on specific hardware components to

ensure real-time, efficient, and reliable functioning of vehicle systems. These

systems involve critical components such as memory, I/O devices, interrupts,

processors, and external peripherals to perform a range of tasks from

controlling engine functions to enhancing user interface experiences.

1. Memory

 Automotive embedded systems use various memory types to store data,

firmware, and operating systems:

o Flash memory is used to store firmware or program code

because it is non-volatile.

o RAM (Random Access Memory) is used for temporary data

storage while processing information.

o EEPROM is used to store critical, non-volatile data, such as

calibration settings.

 The memory management function of an RTOS kernel is slightly

different compared to the General Purpose Operating Systems

 The memory allocation time increases depending on the size of the block

of memory needs to be allocated and the state of the allocated memory block

(initialized memory block consumes more allocation time than un- initialized

memory block)

 Since predict table timing and deterministic behavior are the primary

focus for an RTOS, RTOS achieves this by compromising the effectiveness of

memory allocation

 RTOS generally uses ‘block’ based memory allocation technique, instead

of the usual dynamic memory allocation techniques used by the GPOS.

 RTOS kernel uses blocks of fixed size of dynamic memory and the block

is allocated for a task on a need basis. The blocks are stored in a ‘Free buffer

Queue’.

 Most of the RTOS kernels allow tasks to access any of the memory

blocks without any memory protection to achieve predictable timing and avoid

the timing overheads

 RTOS kernels assume that the whole design is proven correct and

protection is unnecessary. Some commercial RTOS kernels allow memory

protection as optional and the kernel enters a fail-safe mode when an illegal

memory access occurs

 The memory management function of an RTOS kernel is slightly

different compared to the General Purpose Operating Systems

 A few RTOS kernels implement Virtual Memory concept for memory

allocation if the system supports secondary memory storage (like HDD and

FLASH memory).

 In the ‘block’ based memory allocation, a block of fixed memory is

always allocated for tasks on need basis and it is taken as a unit. Hence, there

will not be any memory fragmentation issues.

 The memory allocation can be implemented as constant functions and

thereby it consumes fixed amount of time for memory allocation. This leaves

the deterministic behavior of the RTOS kernel untouched.

2. I/O (Input / Output)

 I/O interfaces are used to exchange data between sensors, controllers,

and actuators. They enable communication between the embedded

system and its environment.

 For example, inputs could include data from sensors like speedometers,

temperature sensors, and pressure sensors, while outputs could control

motors, lights, or displays.

3. Interrupts

 Interrupts are signals that inform the processor that an event requiring

immediate attention has occurred.

o Hardware interrupts are triggered by external devices (e.g.,

sensor data arriving).

o Software interrupts are triggered by software routines for

managing tasks.

 Interrupt handling is critical for systems like airbags, ABS (Anti-lock

Braking System), where real-time response is needed to ensure safety.

Interrupt Handling

 Interrupts inform the processor that an external device or an associated

task requires immediate attention of the CPU.

 Interrupts can be either Synchronous or Asynchronous.

 Interrupts which occurs in sync with the currently executing task is

known as Synchronous interrupts. Usually the software interrupts fall under the

Synchronous Interrupt category. Divide by zero, memory segmentation error etc

are examples of Synchronous interrupts.

 For synchronous interrupts, the interrupt handler runs in the same context

of the interrupting task.

 Asynchronous interrupts are interrupts, which occurs at any point of

execution of any task, and are not in sync with the currently executing task.

 The interrupts generated by external devices (by asserting the Interrupt

line of the processor/controller to which the interrupt line of the device is

connected) connected to the processor/controller, timer overflow interrupts,

serial data reception/ transmission interrupts etc are examples for asynchronous

interrupts.

 For asynchronous interrupts, the interrupt handler is usually written as

separate task (Depends on OS Kernel implementation) and it runs in a different

context. Hence, a context switch happens while handling the asynchronous

interrupts.

 Priority levels can be assigned to the interrupts and each interrupts can be

enabled or disabled individually.

 Most of the RTOS kernel implements ‘Nested Interrupts’ architecture.

Interrupt nesting allows the pre-emption (interruption) of an Interrupt Service

Routine (ISR), servicing an interrupt, by a higher priority interrupt.

4. Processors

 Automotive embedded systems typically use microcontrollers (MCUs)

or microprocessors (MPUs) to execute tasks.

o MCUs are preferred for simpler, low-power tasks such as

controlling the engine, lights, or sensors.

o MPUs are more powerful and are used in systems requiring high

processing power, such as navigation or infotainment systems.

 Dual-core processors are sometimes used for separation of critical tasks

(e.g., braking systems) from non-critical tasks (e.g., entertainment

systems).

5. External Peripherals

 External peripherals include devices that interface with the

microcontroller to support communication and additional functionalities.

o Sensors: Measure various vehicle parameters (e.g., speed, fuel

level, exhaust temperature).

o Actuators: Control mechanical elements like the throttle or brakes.

o Displays and User Interfaces: Show vehicle status or provide

feedback to the driver.

o Communication devices: Can include CAN (Controller Area

Network) bus systems for vehicle-to-vehicle or vehicle-to-sensor

communication.

6. Control and Status Registers

 Control Registers manage the operation of hardware components (e.g.,

turning on or off a device, enabling a timer, or initiating communication).

 Status Registers store information about the current state of devices

(e.g., whether an I/O device is ready to send or receive data).

7. Device Driver

 A device driver is software that allows the embedded system to interact

with external hardware peripherals.

o It translates requests from the software (e.g., sensors, actuators)

into instructions that hardware can understand.

o Drivers ensure efficient and reliable communication between the

system’s hardware and software layers.

8. Timer Driver

 Timer drivers manage timers that provide accurate time-related

operations in embedded systems.

 Timers are used in automotive applications to manage delays between

tasks (e.g., engine control cycles), and periodic events (e.g., checking

sensor data at regular intervals).

9. Watchdog Timers

 Watchdog timers monitor the health of embedded systems.

o They are used to detect malfunctions by resetting the system if it

fails to operate correctly within a defined time period.

o For example, if the engine control system becomes unresponsive,

the watchdog timer will reset it, ensuring the system returns to a

known state.

In an Embedded System, external peripherals are hardware components

connected to the microcontroller or microprocessor to enhance its functionality.

These peripherals require Control and Status Registers (CSR) for interaction

and efficient communication.

1. Control and Status Registers (CSR)

Control and status registers are memory-mapped registers that enable

communication between the processor and external peripherals. They help in

configuring devices, monitoring their status, and controlling operations.

Types of Registers:

 Control Registers: Used to configure the operation of peripherals (e.g.,

enabling/disabling interrupts).

 Status Registers: Indicate the current state of the peripheral (e.g., flag for

data ready).

 Data Registers: Store data to be transmitted or received.

2. Device Driver

A device driver is software that acts as an interface between the operating

system (or firmware) and the external peripheral hardware. It provides an

abstraction layer for communication and manages hardware operations.

Functions of Device Drivers in Embedded Systems:

 Initialization of hardware components

 Configuring and managing registers

 Handling interrupts and events

 Enabling communication protocols (I2C, SPI, UART)

3. Timer Driver

A Timer Driver is responsible for managing hardware timers in an embedded

system. Timers are essential for time-based operations such as generating

delays, scheduling tasks, and measuring time intervals.

Types of Timers:

 General-purpose timers: Used for event counting and time delays.

 PWM Timers: Used for Pulse Width Modulation in motor control and

signal generation.

Timer Driver Functions:

 Start/Stop timer

 Set time duration

 Generate interrupts when the timer expires

4. Watchdog Timers (WDT)

A Watchdog Timer (WDT) is a special hardware timer designed to reset the

system if it encounters a malfunction or unresponsive state. It prevents system

crashes due to software bugs or external disturbances.

Working Principle:

 The system must reset the watchdog timer periodically.

 If the system fails to reset it within a predefined time, the watchdog resets

the system.

Applications of Watchdog Timers:

 Preventing system hang-ups

 Ensuring system reliability in critical applications (e.g., automotive,

industrial automation)

Unit III - Microcontrollers

Microcontrollers and Embedded processors –Overview of 8051 family. 8051

hardware – I/O pins – Ports – Circuits – External Memory Programming: Data

Types– I/O Programming–Logic operations–Data conversion Programs

Overview of the 8051 Microcontroller Family

The 8051 microcontroller is an 8-bit microcontroller developed by Intel in 1981 for

embedded system applications. It belongs to the MCS-51 family and is widely used due to its

simple architecture, reliability, and ease of programming. Many semiconductor

manufacturers, such as Atmel, NXP, Silicon Labs, and STMicroelectronics, have

developed derivatives of the 8051 with enhancements like additional memory, peripherals,

and power-saving modes.

1. Features of the 8051 Microcontroller

 8-bit CPU (Processes 8-bit data at a time)

 4KB ROM (Programmable Memory)

 128 bytes RAM (Internal Data Memory)

 32 I/O pins (Organized in 4 ports: P0, P1, P2, P3)

 Two 16-bit timers/counters (Timer 0 and Timer 1)

 5 Interrupt sources (Two external, two timer, one serial)

 Full Duplex UART for Serial Communication

 Supports Boolean Processor (Bit-addressable RAM and Registers)

8051 Family Variants

Microcontroller Manufacturer Features

Intel 8051 Intel Basic 8051 microcontroller with 4KB ROM, 128B RAM

AT89C51 Atmel Flash memory instead of ROM

AT89S51 Atmel In-System Programmable (ISP)

P89V51RD2 NXP More RAM and faster operation

DS89C420 Dallas Semiconductor High-speed variant with additional features

2. 8051 Hardware Architecture

The 8051 microcontroller consists of several hardware components:

Block Diagram of 8051

 +-------------------------------+

 | 8-bit CPU |

 |-------------------------------|

 | Program Memory (ROM) |

 |-------------------------------|

 | Data Memory (RAM) |

 |-------------------------------|

 | I/O Ports (P0 - P3) |

 |-------------------------------|

 | Timers (T0, T1) |

 |-------------------------------|

 | Serial Communication |

 |-------------------------------|

 | Interrupt Controller |

 +-------------------------------+

Key Components

1. CPU (Central Processing Unit)

o Executes instructions stored in ROM

o Manages communication between different components

2. Memory Organization

o ROM (Read-Only Memory): Stores the program permanently (4KB in 8051)

o RAM (Random Access Memory): Used for temporary data storage (128 bytes)

o Special Function Registers (SFRs): Control hardware components

3. I/O Ports (Input/Output Pins)

o 32 I/O Pins, grouped into 4 Ports (P0, P1, P2, P3)

4. Timers and Counters

o Two 16-bit timers (Timer 0 & Timer 1)

o Used for time delays, pulse width modulation (PWM), and counting events

5. Serial Communication (UART)

o Supports full-duplex communication using SBUF register

o Uses TXD (Transmit) and RXD (Receive) pins

6. Interrupts

o External Interrupts (INT0, INT1)

o Timer Interrupts (TF0, TF1)

o Serial Communication Interrupt

3. I/O Pins and Ports in 8051

Overview of I/O Ports

The 8051 has 4 bi-directional I/O ports (P0, P1, P2, and P3), each consisting

of 8 pins.

Port Pins Function

Port 0 (P0) P0.0 - P0.7 Open-drain, multiplexed with address/data bus

Port 1 (P1) P1.0 - P1.7 General-purpose I/O

Port 2 (P2) P2.0 - P2.7 General I/O, higher address bus

Port 3 (P3) P3.0 - P3.7 Special function I/O

Special Functions of Port 3

Pin Function

P3.0 RXD (Serial Data Receive)

P3.1 TXD (Serial Data Transmit)

P3.2 INT0 (External Interrupt 0)

P3.3 INT1 (External Interrupt 1)

P3.4 T0 (Timer 0 Input)

P3.5 T1 (Timer 1 Input)

P3.6 WR (External Memory Write)

P3.7 RD (External Memory Read)

4. Circuits in 8051 Microcontroller

Basic 8051 Circuit Diagram

To operate the 8051 microcontroller, the following components are needed:

 Power Supply (5V DC)
 Clock Oscillator (11.0592 MHz Crystal)
 Reset Circuit (Capacitor & Resistor)
 Pull-up Resistors (for Port 0)

Basic Power & Reset Circuit

 Vcc (5V)

 │

 ├── 10µF Capacitor ─── Ground

 │

 ├── 10kΩ Resistor ─── Reset Pin (RST)

 │

 8051 Microcontroller

5. External Memory in 8051

Why External Memory?

The basic 8051 has only 4KB ROM and 128B RAM, which may not be enough for

complex applications. External memory is used for:

 Program Memory (ROM / Flash Memory)
 Data Memory (SRAM / EEPROM)

External ROM (Program Memory)

 Connected using PSEN (Program Store Enable)
 Typically 64KB external ROM can be interfaced

External RAM (Data Memory)

 Connected via RD (Read) and WR (Write) pins
 Can extend RAM up to 64KB

Interfacing External RAM with 8051

Pin Function

PSEN Enables external ROM

ALE Address Latch Enable

RD Read Signal
WR Write Signal

Example: Interfacing External 8KB RAM

 8051 74LS373 Latch 8KB RAM

 A0-A7 ────> Data Bus ────> Address Bus

 ALE ────> Latch Enable ────> Chip Enable

 RD ────> Read Signal ────> Data Output

 WR ────> Write Signal ────> Data Input

8051 Microcontroller Programming

The 8051 microcontroller is programmed using Assembly Language or Embedded

C. This section covers:

1. Data Types in 8051
2. I/O Programming
3. Logic Operations
4. Data Conversion Programs

1. Data Types in 8051

The 8051 microcontroller is an 8-bit processor, meaning it processes 8-bit data at a

time. The commonly used data types are:

1.1 Integer Data Types

Type Size Range
unsigned char 8-bit 0 to 255
signed char 8-bit -128 to 127
unsigned int 16-bit 0 to 65,535
signed int 16-bit -32,768 to 32,767
1.2 Boolean Data Type

 Bit-addressable data: The 8051 has 16-bit addressable locations (bit
variables).

 Example:
bit flag = 1; // 1-bit variable stored in bit-

addressable memory

1.3 Special Data Type (SFRs)

Special Function Registers (SFRs) control timers, ports, serial communication, etc.

Example:
c

CopyEdit

sfr P1 = 0x90; // Define Port 1

sfr TMOD = 0x89; // Timer Mode Register

2. I/O Programming in 8051

8051 has 32 I/O pins, divided into four 8-bit ports (P0, P1, P2, P3). Each pin can

function as input or output.

2.1 Writing to a Port (Output)

#include <reg51.h>

void main() {

 P1 = 0xFF; // Set all P1 pins HIGH

 while(1);

}

� Explanation: P1 = 0xFF; sets all bits of Port 1 to 1 (HIGH, 5V).

2.2 Reading from a Port (Input)

#include <reg51.h>

void main() {

 unsigned char x;

 x = P2; // Read data from Port 2

 while(1);

}

� Explanation: x = P2; reads 8-bit data from Port 2.

2.3 LED Blinking Example

#include <reg51.h>

sbit LED = P1^0; // Define LED at P1.0

void delay() {

 int i;

 for(i=0; i<30000; i++); // Software delay

}

void main() {

 while(1) {

 LED = 0; // LED ON

 delay();

 LED = 1; // LED OFF

 delay();

 }

}

3. Logic Operations in 8051

3.1 Logical AND, OR, XOR

Operation Symbol Example

AND & P1 = P1 & 0xF0;

OR ` `

XOR ^ P3 = P3 ^ 0xAA;

Example: Masking Upper 4 Bits

P1 = P1 & 0xF0; // Clears lower 4 bits of P1

3.2 Bitwise NOT (~)

P1 = ~P1; // Complement all bits of Port 1

4. Data Conversion Programs in 8051

Data conversion programs convert binary, BCD, ASCII, and decimal numbers.

4.1 Binary to BCD Conversion

#include <reg51.h>

unsigned char binaryToBCD(unsigned char bin) {

 unsigned char high, low;

 high = bin / 10; // Extract tens place

 low = bin % 10; // Extract ones place

 return (high << 4) | low; // Combine as BCD

}

void main() {

 unsigned char result;

 result = binaryToBCD(27); // Convert 27 to BCD

(0x27)

 while(1);

}

4.2 BCD to ASCII Conversion

unsigned char BCDToASCII(unsigned char bcd) {

 return (bcd & 0x0F) + 0x30; // Convert lower 4-bits

to ASCII

}

4.3 ASCII to Decimal Conversion

unsigned char ASCIIToDecimal(unsigned char ascii) {

 return ascii - 0x30; // Convert ASCII '0'–'9' to

Decimal 0–9

}

4.4 Hexadecimal to ASCII Conversion

unsigned char hexToASCII(unsigned char hex) {

 if(hex <= 9) return hex + '0'; // Convert 0-9

 else return hex + 'A' - 10; // Convert A-F

}

Unit IV
Designing Embedded System with 8051 Microcontroller

Factors to be considered in selecting a controller–8051 Microcontroller–

Designing with 8051 Programming: Structure of embedded program – infinite loop –
compiling, linking & debugging

Factors to be Considered in Selecting a Controller

When choosing a microcontroller for an embedded application, several key factors must be

evaluated:

1. Performance Requirements – Based on speed (clock frequency), instruction

execution time, and real-time responsiveness.

2. Memory Requirements – Consider the size of Flash (ROM) for program storage

and RAM for data storage.

3. Power Consumption – Important in battery-operated or portable devices; low-power

modes and sleep states are beneficial.

4. Number of I/O Pins – Should match the number of input/output devices the

application uses.

5. Peripheral Features – Required features such as ADC, timers, PWM, UART, SPI,

I2C, etc.

6. Cost and Availability – A cost-effective microcontroller that’s readily available is

always preferred.

7. Development Tools – Availability of compilers, debuggers, and simulation tools

eases development.

8. Community and Vendor Support – Access to documentation, sample code, and

technical support helps in quick development.

The 8051 microcontroller is popular because it meets many of these criteria for small to

medium embedded applications.

8051 Microcontroller

The 8051 is an 8-bit microcontroller originally developed by Intel. It includes:

 4 KB ROM, 128 bytes of RAM

 32 I/O lines divided over 4 ports (P0 to P3)

 Two 16-bit timers/counters

 One full-duplex serial port

 5 interrupt sources

 Boolean processor for bit-level operations
Its simplicity, availability, and robust instruction set make it ideal for control-based

applications such as home automation, industrial machinery, and embedded

appliances.

Designing with 8051 Programming

Designing an embedded system using the 8051 involves writing software (firmware) that

controls hardware directly. This includes:

Structure of an Embedded Program

An embedded C program for 8051 typically has:

 Header includes for hardware registers

 Main() function where the logic is written

 Initialization code for ports, timers, or peripherals

 An infinite loop (while(1) or for(;;)) that continuously runs, since embedded

systems operate perpetually

#include <reg51.h> // Header for 8051

void main() {

 P1 = 0x00; // Set Port 1 as output

 while(1) {

 P1 = 0xFF; // Turn ON all port pins

 }

}

Compiling, Linking, and Debugging

 Compiling: Converts source code (.c) to object code (.obj).

 Linking: Combines object files and libraries into a final executable (hex/bin file).

 Debugging: Using simulators or on-chip debuggers to check logic errors, memory

access, and variable values.

Tools like Keil µVision or MPLAB provide an integrated environment to write, compile,

simulate, and debug embedded C programs for the 8051.

Unit V
Real Time Operating System(RTOS)

Operating system basics–Types of OS–Real-Time Characteristics– Selection
Process of an RTOS, Design and Development: Embedded system development
Environment – IDE – types of file generated, disassembler – de-compiler – simulator
– emulator and debugging, embedded product development life-cycle,trends in
embedded industry

Operating System Basics

An Operating System (OS) is the foundational software that manages a computer's hardware

and software resources. It acts as an interface between the hardware and the user/application.

Its core functions include:

 Process Management: Handles creation, execution, and termination of processes.

 Memory Management: Allocates and deallocates memory space as needed by

different programs.

 File Management: Manages data storage, file naming, directories, and access

permissions.

 Device Management: Controls and communicates with peripheral devices (e.g.,

keyboard, printer).

 Security & Access Control: Protects data and restricts unauthorized access

Types of Operating Systems

1. Batch Operating System
o Jobs are grouped and executed without user interaction.

o Common in mainframes.

2. Time-Sharing Operating System
o Allows multiple users to share system resources simultaneously.

o Example: UNIX.

3. Distributed Operating System
o Manages a group of networked computers and makes them appear as a single

system.

4. Network Operating System
o Provides networking functions such as file sharing and remote access.

5. Mobile Operating System
o Used in smartphones/tablets.

o Examples: Android, iOS.

6. Embedded Operating System
o Lightweight OS designed for embedded systems with limited resources.

o Examples: FreeRTOS, VxWorks, µC/OS-II.

7. Real-Time Operating System (RTOS)
o Designed for applications with strict timing requirements.

Real-Time Operating System (RTOS)

A Real-Time Operating System must ensure consistent timing and meet deadlines.

Characteristics include:

 Determinism: Predictable task execution timing.

 Low Latency: Fast response to external or internal events.

 Multitasking Support: Manages multiple processes efficiently.

 Preemptive Scheduling: Higher-priority tasks can interrupt lower-priority ones.

 Minimal Jitter: Low variation in task execution timing.

 Task Prioritization: Critical tasks get executed first.

 Real-Time Clocks & Timers: Supports accurate scheduling and time measurement.

A Real-Time Operating System (RTOS) is designed to handle tasks within strict time

constraints. It ensures that high-priority tasks execute predictably and on time, which is

critical in embedded applications like medical equipment, robotics, or automotive control.

Unlike general-purpose OS (e.g., Windows), an RTOS focuses on determinism, reliability,

and minimal latency.

Selection Process of an RTOS

To choose the right RTOS, consider:

1. Application Requirements
o Is hard real-time or soft real-time needed?

2. Hardware Compatibility
o Does the RTOS support the target microcontroller?

3. Footprint
o Small memory usage is ideal for limited hardware.

4. Task Management
o Number of tasks, inter-process communication (IPC), semaphores.

5. Tool Support
o Debuggers, IDEs, profilers, and documentation.

6. Licensing & Cost
o Free (e.g., FreeRTOS) vs commercial (e.g., QNX, VxWorks).

7. Community & Vendor Support
o Helps resolve issues and speeds up development.

Design and Development: Embedded System Development Environment

An Embedded System Development Environment is a combination of hardware and

software tools used to write, test, and deploy embedded applications.

IDE (Integrated Development Environment)

An IDE integrates:

 Code editor

 Compiler

 Debugger

 Simulator/Emulator support

IDE (Integrated Development Environment)

An IDE integrates:

 Text Editor: Write and edit source code.

 Compiler: Converts C/ASM code to machine code.

 Debugger: Monitor code execution.

 Simulator/Emulator Interface: Test code without hardware.

Examples: Keil µVision, STM32CubeIDE, Arduino IDE, Eclipse + GCC.

Types of Files Generated

During embedded development, the following files are produced:

File Type Extension Description

Source Code .c, .asm, .h Human-readable code

Object File .obj Machine code without linking

Executable File .hex, .bin File uploaded to microcontroller

Map File .map Shows memory allocation and usage

List File .lst Assembly listing with addresses

Disassembler and De-compiler

 Disassembler converts machine code back into assembly code. Useful for debugging

or reverse engineering.

 De-compiler tries to convert machine code into a high-level language like C. It is

harder and less accurate but useful for analysis when source code is lost.

Simulator and Emulator and Debugging

 Simulator mimics the microcontroller behavior in software without real hardware.

Ideal for early-stage testing.

 Emulator is hardware that replicates the target system. Offers real-time debugging

with hardware-in-loop.

 Debugging tools include breakpoints, step-through execution, watch variables, and

memory inspection to identify logic errors and runtime issues.

Embedded Product Development Life-Cycle

1. Requirement Analysis

2. System Specification

3. Hardware/Software Partitioning

4. Hardware Design

5. Software Design

6. Implementation & Testing

7. Integration

8. System Testing

9. Deployment

10. Maintenance/Updates

This lifecycle ensures structured development from concept to product launch.

Trends in Embedded Industry

 AI and Machine Learning at Edge – Embedded AI in devices like cameras and

wearables.

 IoT Integration – Embedded devices are increasingly connected via the Internet.

 Low Power Design – Battery-efficient designs for wearables and sensors.

 RISC-V Architecture – Open-source ISA gaining popularity.

 Security – Embedded systems now include features like encryption, secure boot, and

hardware TPM.

 RTOS adoption – Use of FreeRTOS, Zephyr, and commercial RTOS is growing in

even small-scale applications.

