Microcontrollers Programming
(Semester -ll)

Year | Credits 4
CourseCode:CSCS106 Hours 75
Sem. | Course Title: Microcontrollers Programming
Category C
Unit No. Course Content Hours
Theory Component
Microprocessors and Microcontrollers
Microprocessors vs Microcontrollers —8051 Architecture —
Unit | Input / Output Pins—Ports—External Memory—Counter and 9
Timers — Serial Data I/O — Interrupts
Programming8051
Addressing Modes — External Data Moves — Code Memory
Unit I Read-Only Data Moves — PUSH and POP Opcodes — Data 9
Exchanges — Logical Operations — Arithmetic Operations —
Jump and Call Opcodes
8051 Microcontroller Design
Microcontroller Specification — Design — Testing — Timing
Unit Il Subroutines — Lookup Tables for 8051 — Serial Data 9
Transmission
Applications
Unit IV Keyboards — Displays — Pulse Measurement — D/A and A/D 9
Conversions — Multiple Interrupts
Serial Data Communication
Unit vV NetworkConfigurations—8051DataCommunication Modes 9

Recommended Learning Resources

Print Resources

1. Kenneth J. Ayala, “The 8051 Microcontroller

Architecture,

Programming, and Applications”, Delmar Cengage Learning, Third

Edition, 2004.

2. Martin Bates,” PIC Micro controllers- An Introduction to
Microelectronics”, Third Edition,Newnes,Elsevier,2011.

3. Hubert Henry Ward, “C Programming for the PIC Microcontroller-
DemystifyCodingwithEmbeddedProgramming”,Apress,UK,2020.

https://doi.org/10.1007/978-1-4842-5525-4




Unit - 1: Microprocessors and Microcontrollers

Microprocessors vs Microcontrollers —8051 Architecture — Input /
Output Pins—Ports—External Memory—Counter and Timers — Serial Data
I/O — Interrupts

Microprocessors vs. Microcontrollers

Microprocessors

e A microprocessor is a central processing unit (CPU) that performs arithmetic and
logic operations, fetches instructions from memory, and processes data.

o It requires external components such as memory (RAM, ROM), input/output ports,
and other peripherals for functioning.

o Typically used in computers, servers, and complex processing systems.

Examples: Intel 8085, Intel 8086, Intel Pentium, AMD Ryzen.
Microcontrollers

« A microcontroller is a compact integrated circuit that combines a CPU, memory
(RAM and ROM), input/output ports, timers, and communication modules into a
single chip.

o Itis designed for specific tasks like controlling appliances, vehicles, robots, and
embedded systems.

e Consumes less power and is more cost-effective for dedicated applications.

Examples: Intel 8051, AVR, PIC, ARM Cortex, Arduino.

Comparison

Microprocessor Microcontroller
Contains only CPU; needs external memory and CPU, memory, 1/O ports, and peripherals are
I/0O devices. integrated.
General-purpose; used in computers and Task-specific; used in embedded systems.
Servers.
Eg;sl\tlirr and more powerful but consumes more Slower but power-efficient,

Complex circuitry due to external components. Simple and compact design.
Higher cost and complexity. Cost-effective and easy to implement.



8051 Microcontroller Architecture

The Intel 8051 is an 8-bit microcontroller with Harvard architecture, meaning it has separate
memory spaces for program and data. It includes a CPU, 128 bytes of RAM, 4 KB of ROM, 32 I/O
lines, two timers/counters, a serial port, and five interrupt sources. The 8051 operates on a crystal
oscillator (commonly 12 MHz) and supports on-chip peripheral functions for embedded control. The
internal RAM is divided into general-purpose RAM, bit-addressable RAM, and special function
registers (SFRs), making it highly efficient for 1/0 control and real-time processing.

Diagram

The following diagram shows the overall idea and working principles of the 8051
microcontroller.

5 A096 Bytes
Oscillator and 18 128 Bytes Data

TII'I'IiI'II Program

M L RAM )
Memory (ROM) emory !

Subsystem

interrupts

Control PO P2 P1 P3

External interrupts Dutput
Serial Input

Main Components

1. Central Processing Unit (CPU):
o Controls and processes all operations.
o Fetches, decodes, and executes instructions.
2. Memory:
o 128 Bytes of Internal RAM: Stores temporary data and variables.
o 4 KB of Internal ROM: Stores program instructions permanently.
o External memory can be connected if needed.
3. Input/Output Ports:
o Four 8-bit ports (PO, P1, P2, P3), each with 8 pins, are used to connect external
devices like sensors, LEDs, and displays.
4. Timers and Counters:
o Two 16-bit timers (Timer 0 and Timer 1) are used for timing events,
generating delays, and counting external pulses.



5. Serial Communication:
o A Universal Asynchronous Receiver-Transmitter (UART) module enables
serial data transmission and reception.
6. Interrupt System:
o Five interrupt sources: two external interrupts, two timer interrupts, and one
serial communication interrupt.
o Interrupts improve efficiency by allowing the CPU to respond to events
without constantly polling.
7. Bus System:
o 8-bit Data Bus: Transfers data between CPU, memory, and peripherals.
o 16-bit Address Bus: Accesses memory locations, supporting up to 64 KB of
external memory.

Input / Output Pins and Ports

The 8051 has 40 pins, of which 32 pins are used as input/output. These are organized into 4
ports (PO to P3), each having 8 bits. Each pin can be programmed as input or output depending on
the logic written into the program. The remaining 8 pins are used for control (like RESET, XTAL1/2 for
oscillator, and control signals such as ALE, PSEN, EA) and power supply (Vcc and GND). The versatility
of 1/0 pins makes 8051 suitable for interfacing with LEDs, sensors, displays, etc.

N
P10 40 d vCC
P1.1[d2 39 [J P0.0 (ADO)
P1.23 38 [d P0.1 (AD1)
P1.34 37 [0 P0.2 (AD2)
P1.405 36 [1 P0.3 (AD3)
P1.5]6 35 [0 P0.4 (AD4)
P167 34 [0 P0.5 (AD5)
P1.7(]8 33 [0 P0.6 (AD6)
RSTO9 32 [0 P0.7 (AD7)

(RXD) P3.0J 10 8051 31 [J EA/VPP

(TXD) P3.1 11 30 [0 ALE/PROG

(INTO) P3.2 ] 12 29 1 PSEN

(INT1) P3.3] 13 28 [0 P2.7 (A15)

(TO) P3.4 ] 14 27 [0 P2.6 (A14)
(T1) P35 15 26 [0 P2.5 (A13)
(WR)P3.6] 16 25 [0 P2.4 (A12)
(RD)P3.7 Q17 240 P23 (A11)
XTAL2 (] 18 230 P2.2 (A10)
XTAL1 19 22 1 P2.1 (A9)
GND ] 20 21 [0 P2.0 (A8)

40 - PIN DIP




The 8051 microcontroller has 32 input/output pins divided into four 8-bit ports:

1. Port0 (P0.0 - PO.7):
o Open-drain, meaning it requires external pull-up resistors for proper operation.
o Can be used as an input/output port or as the lower-order address and data bus
(ADO - AD7) for external memory interfacing.
2. Portl(P1.0-PL7):
o Dedicated input/output port with internal pull-up resistors.
o Commonly used for general-purpose input/output operations.
3. Port2 (P2.0-P2.7):
o Can function as a general-purpose 1/O port or as the higher-order address bus
(A8 - A15) when interfacing with external memory.
4. Port 3 (P3.0 - P3.7):
o Functions as both a general-purpose 1/0 port and a control port with
specialized functions such as:
= P3.0: Serial input (RXD)
= P3.1: Serial output (TXD)
= P3.2: External interrupt 0 (INTO)
= P3.3: External interrupt 1 (INT1)
= P3.4: Timer 0 external input (T0)
= P3.5: Timer 1 external input (T1)
= P3.6: External data memory write (WR)
= P3.7: External data memory read (RD)

External Memory

The 8051 microcontroller has limited internal memory, but external memory can be
connected using the address and data buses. The 8051 can address up to 64 KB of external
program memory (ROM) and 64 KB of external data memory (RAM). External memory is
accessed using Port 0 (lower 8-bit address/data multiplexed) and Port 2 (higher 8-bit address),
along with control signals /PSEN (Program Store Enable) for ROM and /RD, /WR for RAM.
The EA (External Access) pin determines whether the microcontroller uses internal or
external memory.

1. External RAM (Data Memory):

o Upto 64 KB of external RAM can be interfaced using the address bus and
Port O for data transfer.

o The ALE (Address Latch Enable) pin is used to separate the address and data
signals.

2. External ROM (Program Memory):

o Ifthe internal 4 KB ROM is insufficient, up to 64 KB of external ROM can be
connected using Port 2 for higher-order addresses and Port O for lower-order
addresses and data.

o The PSEN (Program Store Enable) pin is used to read data from external
ROM.



Timers and Counters

The 8051 microcontroller has two 16-bit timers: Timer 0 and Timer 1. Each timer has four
modes of operation. The 8051 includes two 16-bit timers/counters (Timer 0 and Timer 1).
These can operate in various modes:

Mode 0: 13-bit Timer
Mode 1: 16-bit Timer
Mode 2: 8-bit Auto-reload
Mode 3: Split Timer mode

Timers can be used to create time delays, count external events, or generate baud rates for
serial communication. Control registers like TCON and TMOD are used to configure their
operation.

1. Timer Mode:
o Generates time delays by counting internal clock pulses.
o The clock frequency is divided by 12 to determine the timer increment rate.
2. Counter Mode:
o Counts external pulses applied to specific pins (TO for Timer 0, T1 for Timer
1).
3. Timer Registers:
o Each timer uses two 8-bit registers: TLx (lower byte) and THx (higher byte),
where x =0 or 1.
o These registers store the current count value.
4. Timer Control (TCON) Register:
o Controls timer operation and flags overflow events.
o Bits: TFO (Timer 0 overflow flag), TRO (Timer O run control), TF1 (Timer 1
overflow flag), TR1 (Timer 1 run control).

Serial Data Input/Output (UART Communication)

The 8051 microcontroller includes a built-in UART module that enables serial
communication using two pins: The 8051 features full-duplex serial communication via the
Serial Control (SCON) register. It supports different modes like asynchronous and
synchronous data transmission. The TXD (transmit) and RXD (receive) pins located on Port
3 handle serial data transfer. The baud rate is typically generated using Timer 1. It supports
serial data transfer using interrupt-driven or polling methods.

e RXD (P3.0): Receives serial data.
e TXD (P3.1): Transmits serial data.

1. Baud Rate:



o The speed of data transfer is determined by the baud rate, which is controlled
using Timer 1 in mode 2 (auto-reload mode).
2. Data Format:
o Standard formats include 8-bit data with 1 start bit, 1 stop bit, and no parity
bit.
3. SBUF Register:
o SBUF (Serial Buffer Register) is used to store data during transmission and
reception.
o Writing data to SBUF transmits it via TXD, and reading from SBUF receives
data from RXD.
4. SCON Register:
o The Serial Control (SCON) register configures and controls the serial port.
o Important bits:
= REN (Receive Enable): Enables reception.
=TI (Transmit Interrupt Flag): Set when transmission is complete.
= RI (Receive Interrupt Flag): Set when a character is received.

Interrupts in 8051 Microcontroller

Interrupts allow the CPU to pause its current task and respond to urgent events. The
8051 supports five interrupt sources: two external interrupts (INTO and INT1), two timer
interrupts (TO and T1), and one serial communication interrupt. Interrupts allow the
microcontroller to respond to external or internal events immediately, improving real-time
performance. The IE (Interrupt Enable) and IP (Interrupt Priority) registers are used to enable
and prioritize these interrupts. This mechanism allows multitasking by interrupting the main
program to service high-priority tasks.

External Interrupt O (INTO) — Pin P3.2
External Interrupt 1 (INT1) — Pin P3.3
Timer 0 Overflow Interrupt (TFO)
Timer 1 Overflow Interrupt (TF1)
Serial Communication Interrupt (RI/T1)

agrownE

Interrupt Priority and Control

e Interrupts are prioritized, with external interrupts having the highest priority, followed
by timer interrupts and serial interrupts.

e The Interrupt Enable (IE) register is used to enable or disable interrupts.

e The Interrupt Priority (IP) register assigns priority levels.

Interrupt Enable (IE) Register Bits:

EA: Global interrupt enable (must be set to 1 to enable any interrupt)
ETO: Timer 0 interrupt enable

ET1: Timer 1 interrupt enable

EXO: External interrupt 0 enable

EX1: External interrupt 1 enable



o ES: Serial interrupt enable
Interrupt Priority (IP) Register Bits:

PTO: Timer O interrupt priority
PT1: Timer 1 interrupt priority
PXO0: External interrupt O priority
PX1: External interrupt 1 priority
PS: Serial interrupt priority

Interrupt Execution Sequence

=

When an interrupt occurs, the CPU finishes executing the current instruction.

2. The Program Counter (PC) is saved, and the CPU jumps to the interrupt vector
address.

3. After executing the interrupt service routine (ISR), the CPU returns to the main

program using the RETI instruction.



Unit — Il Programming 8051
Addressing Modes — External Data Moves — Code Memory Read-Only Data Moves —
PUSH and POP Opcodes — Data Exchanges — Logical Operations — Arithmetic
Operations —Jump and Call Opcodes

Programming the 8051 Microcontroller

1. Addressing Modes

Addressing modes define how the operand (data) is specified in an instruction. The 8051
microcontroller supports the following addressing modes:

1. Immediate Addressing Mode
o Datais directly specified in the instruction.
o Syntax:MOV A, #25H (Move hexadecimal 25 into the accumulator A)
2. Register Addressing Mode
o Datais stored in a register and is referred to by its name.
o Syntax:MOV A, R1 (Move datafrom register R1 to accumulator A)
3. Direct Addressing Mode
o Access data stored in a specific internal RAM location.
o Syntax:MOV A, 50H (Move data from RAM address 50H to A)
4. Indirect Addressing Mode
o The address of data is held in a register (RO or R1) or a pointer register.
o Syntax: MOV A, QRO (Move datafrom the address pointed to by RO to A)
5. External Addressing Mode
o Access data from external memory using DPTR (Data Pointer) or register indirect
mode.
o Syntax: MOVX A, @DPTR (Move data from external memory address pointed by
DPTR to A)
6. Indexed Addressing Mode
o Used to access data from program memory (ROM) using an index.
o Syntax:MOVC A, RA+DPTR (Move code byte from ROM address formed by A +
DPTR to A)

2. External Data Moves

External data moves allow the transfer of data between the microcontroller and external
RAM or devices. The movx instruction is used for this purpose.

e Using DPTR:
o MOVX A, @DPTR (Move data from external memory pointed by DPTR to A)
o MOVX @DPTR, A (Move datafrom A to external memory pointed by DPTR)
e Using Register Indirect Mode:
o MOVX A, @ROOrMovx A, @RI (Move datafrom external memory addressed by
ROorR1toA)



o MOVX @RO, AorMOvVX @R1, A (Move datafrom A to external memory)

3. Code Memory Read-Only Data Moves

The instruction movc is used to move data from code memory (ROM) to the accumulator.
Since ROM is read-only, data cannot be written to it.

e Using DPTR as Base:

o MOVC A, RA+DPTR (Move code byte from ROM address formed by A + DPTR to A)
e Using PC as Base:

o MOVC A, QA+PC(Move code byte from ROM address formed by A + PC to A)

Address FFFF hex

EA pin=1 I
EA pin=0 Additional ROM

¥ (64K ma)

Address FFFF hex

External ROM
Mry : Address 4000 hex
R
(“K m’ ; Address JFFF hex

Microcontroller

e Address 0000 hax sy 8051

4. PUSH and POP Opcodes

The stack is a region of internal RAM used for temporary data storage. It operates in Last-
In-First-Out (LIFO) order. The SP (Stack Pointer) register points to the top of the stack.

e PUSH Instruction: Stores data onto the stack.
o Syntax: PUSH 50H (Push the data from RAM address 50H onto the stack)
o Operation: SP is incremented, and data is stored at the new stack address.
e POP Instruction: Retrieves data from the stack.
o Syntax: POP 60H (Pop data from the stack into RAM address 60H)
o Operation: Data is retrieved from the address pointed to by SP, and SP is
decremented.



Example:

MOV SP, #07H
MOV A, #25H

Initialize stack pointer
Load accumulator with 25H

Ne Ne Ne Ne N

PUSH ACC Push A onto the stack
MOV A, #42H Load accumulator with 42H
POP R1 Pop from stack into R1 (Rl = 25H)

5. Data Exchanges
Data exchange instructions swap the contents of registers or memory locations.

1. XCH A, Rn: Exchange data between accumulator and register (RO - R7).
o Example: XCH A, R1 (Exchange contents of A and R1)
2. XCH A, direct: Exchange data between accumulator and a direct RAM location.
o Example: xCH A, 50H (Exchange contents of A and RAM address 50H)
3. XCH A, @Ri: Exchange data between accumulator and the address pointed to by RO
or R1.
o Example: XCH A, QRO
4. XCHD A, @Ri: Exchange only the lower nibble (4 bits) between accumulator and
indirect address.
o Example: XCHD A, QRO

6. Logical Operations
Logical instructions manipulate data at the bit level, performing operations like AND, OR,
XOR, and NOT.

Instruction Description Example
ANL A, Rn AND register with accumulator ANL A, R1
ANL A, direct AND direct address byte with accumulator ANL A, 50H
ANL A, #data AND immediate data with accumulator ANL A, #0FO0H
ORL A, Rn OR register with accumulator ORL A, R2
ORL A, direct ORdirect address byte with accumulator ORL A, 60H
ORL A, #data ORimmediate data with accumulator ORL A, #0F0H
XRL A, Rn XOR register with accumulator XRL A, R3
XRL A, direct XOR direct address byte with accumulator XRL A, 70H
XRL A, #data XORimmediate data with accumulator XRL A, #O0FOH
CPL A Complement (invert) all bits of accumulator CPL A
CLR A Clear all bits of accumulator (set to zero) CLR A

7. Arithmetic Operations

Arithmetic instructions perform basic mathematical operations like addition, subtraction,
increment, and decrement.



Instruction Description Example

ADD A, Rn Add register to accumulator ADD A, R4

ADD A, direct Add direct address byte to accumulator ADD A, 50H
ADD A, #data Addimmediate datato accumulator ADD A, #25H
ADDC A, Rn Add with carry flag ADDC A, R5
SUBB A, Rn Subtract register from accumulator with borrow SUBB A, R6

SUBB A, #data Subtractimmediate data from accumulator with borrow SUBB A, #10H

INC A Increment accumulator by 1 INC A
INC Rn Increment register by 1 INC R7
INC direct Increment data at direct address by 1 INC 60H
DEC A Decrement accumulator by 1 DEC A
DEC Rn Decrement register by 1 DEC R1
DEC direct Decrement data at direct address by 1 DEC 70H
DA A Decimal adjust accumulator after BCD addition DA A
MUL AB Multiply A and B registers (16-bit result in A and B) MUL AB
DIV AB Divide A by B (Quotient in A, remainder in B) DIV AB

8. Jump and Call Opcodes

Jump and call instructions control the flow of a program. They allow the program to make
decisions and reuse code by calling subroutines.

Jump Instructions (JMP)

1. Unconditional Jumps:
o SJMP label (Short jump within £127 bytes)
o LJMP address (Longjump to any 16-bit address)
o AJMP address (Absolute jump within 2 KB page)
2. Conditional Jumps:
JZ label (Jump if accumulator is zero)
JNZ label (Jump if accumulator is not zero)
JC label (Jump if carry flag is set)
JNC label (Jump if carry flag is not set)
JB bit, label (Jump if specified bit is set)
JNB bit, label (Jump if specified bitis not set)
JBC bit, label (Jump if bitis set and then clear it)
3. Looping Instruction:
o DJNZ Rn, label (Decrement register and jump if not zero)
o DJNZ direct, label (Decrement direct address and jump if not zero)

O O O O 0O O O

Call Instructions (CALL)

1. LCALL (Long Call):

o LCALL address (Call subroutine at any 16-bit address)

o Saves the return address onto the stack and jumps to the subroutine.
2. ACALL (Absolute Call):

o ACALL address (Call subroutine within 2 KB page)



3. RET (Return):

o RET (Return from subroutine)

o Pops the return address from the stack and resumes execution.
4. RETI (Return from Interrupt):

o RETI (Return from interrupt service routine)

Example: Subroutine Using CALL and RET

ORG 0000H

MOV A, #10H
LCALL SUBROUTINE
SJMP END

SUBROUTINE:
ADD A, #20H
RET

END:
END

e The main program calls the SUBROUTINE, which adds 20H to the accumulator and returns.

Unit I 8051 Microcontroller Design
Microcontroller Specification — Design — Testing — Timing Subroutines — Lookup Tables for
8051 — Serial Data Transmission

8051 Microcontroller Design
1. Microcontroller Specification

The 8051 microcontroller is an 8-bit microcontroller developed by Intel, widely used in
embedded systems for its simplicity and efficiency. Key specifications include:

e Processor: 8-bit CPU

e Clock Frequency: 12 MHz (Standard, can be increased using external oscillators)
e Program Memory (ROM): 4 KB (On-chip, can be expanded externally)

e Data Memory (RAM): 128 bytes (Internal, expandable up to 64 KB externally)

e 1/0 Ports: 4 ports (PO, P1, P2, P3), each with 8 pins

¢ Timers/Counters: 2 (Timer 0, Timer 1)

e Interrupts: 5 (2 external, 3 internal)

e Serial Communication: UART (Universal Asynchronous Receiver-Transmitter)

2. Design

Designing an 8051-based system involves the following steps:



A. Selecting Microcontroller and Components

e Choose the appropriate 8051 variant (AT89C51, AT89S52, etc.) based on the application.
e Include components like crystal oscillators, capacitors, reset circuits, and power supply units.

B. Circuit Design

1. Power Supply:
o Typically 5V DCis used.
2. Clock Oscillator:
o An external crystal oscillator (usually 11.0592 MHz or 12 MHz) ensures timing
accuracy.
3. Reset Circuit:
o Avreset pin (RST) connected with a resistor and capacitor ensures the system resets
on power-up.
4. Input/Output Interfaces:
o Use GPIO pins for sensors, actuators, LEDs, and displays.
5. Memory Expansion:
o Connect external RAM or ROM if required.
6. Serial Communication Interface:
o Connect RS-232 or USB interfaces using MAX232 IC.

C. Programming

e Write programs using Assembly or Embedded C.
e Use Keil uVision IDE or MPLAB for coding and simulation.

D. PCB Layout

e Design PCB using software like Proteus, Eagle, or Altium.

3. Testing

Testing ensures that the designed system works correctly and meets performance
requirements. Steps include:

1. Hardware Testing:

o Check power supply, clock frequency, reset circuit, and GPIO connections.
2. Software Testing:

o Verify the logic of programs, instruction execution, and data flow.
3. Functional Testing:

o Ensureall inputs and outputs function as expected.
4. Performance Testing:

o Measure timing accuracy, interrupt handling, and data transmission rates.
5. Debugging:

o Use tools like simulators and logic analyzers to identify and fix issues.



4. Timing Subroutines

Timing subroutines generate precise delays using timers in the 8051. Timer 0 and Timer 1 are
16-bit timers, and their modes determine how they count.

Timer Modes:

e Mode 0: 13-bit timer (counts 0 to 8191)

e Mode 1: 16-bit timer (counts 0 to 65535)

e Mode 2: 8-bit auto-reload timer

e Mode 3: Split timer mode (Timer 0 divided into two 8-bit timers)

Delay Subroutine Example (Using Timer 0 in Mode 1):

ORG 0000H

MOV TMOD, #01H ; Timer 0, Mode 1
MOV THO, #0FCH ; Load initial values

MOV TLO, #018H
SETB TRO ;

HERE: JNB TFO, HERE

CLR TRO ;
CLR TFO ;
RET
END

Start Timer O

; Wait until overflow
Stop Timer
Clear overflow flag

e This generates approximately a 1 ms delay using a 12 MHz clock.

5. Lookup Tables for 8051

Lookup tables store predefined data, which the microcontroller can quickly access using
indexed addressing. They are commonly used for character patterns, waveforms, or
mathematical functions like sine or logarithms.

Example: Displaying Characters Using Lookup Tables

ORG 0000H

MOV DPTR, #TABLE
MOV A, #02H

MOVC A, QA+DPTR
MOV P1, A

SJIMP $

TABLE: DB 41H, 42H,
END

Ne Ne Ne N

Load table address into DPTR
Load index (character 2)
Retrieve character from table
Output character to port 1

43H, 44H ; ASCII for A, B, C, D

e This code retrieves the ASCIl code of the character "C" from the table and outputs it on Port

1.

6. Serial Data Transmission



The 8051 microcontroller uses UART for serial communication. It transmits and receives
data in asynchronous mode using TXD (P3.1) and RXD (P3.0) pins.

Configuration Steps:

Configure the Timer 1 in Mode 2 (8-bit auto-reload) for baud rate generation.
Set the SMO0 and SM1 bits of the SCON register to select mode 1 (8-bit UART).
Enable reception by setting REN bit.

Use SBUF to transmit and receive data.

Monitor Tl and RI flags for transmission and reception completion.

ik wh e

Baud Rate Calculation:
Baud Rate=0Oscillator Frequency12x(256-TH1)Baud\ Rate = \frac{Oscillator\ Frequency}12 \times
(256 - TH1)}

Example: Sending and Receiving Data

ORG 0000H

MOV TMOD, #20H ; Timer 1, Mode 2 (Auto-reload)
MOV TH1, #0FDH ; Baud rate 9600 (11.0592 MHz)
MOV SCON, #50H ; Mode 1, 8-bit UART, REN enabled
SETB TR1 ; Start Timer 1

MOV SBUF, #41H ;
HERE: JNB TI, HERE
CLR TI ; Clear transmit flag

Send ASCII 'A'

HEREl: JNB RI, HEREL

MOV A, SBUF ; Receive data into accumulator
CLR RI ; Clear receive flag

SIMP $

END

e This program transmits the character 'A' and waits to receive a character.

Summary

e Microcontroller Specification: Defines 8051’s key features and architecture.

e Design: Includes hardware selection, circuit design, and programming.

e Testing: Ensures the system works correctly through hardware and software tests.
e Timing Subroutines: Provide precise delays using timers.

e Lookup Tables: Store predefined data for quick access.

e Serial Data Transmission: Enables communication using UART.



Unit IV Applications
Keyboards — Displays — Pulse Measurement — D/A and A/D Conversions — Multiple Interrupts

8051 Microcontroller Applications

The 8051 microcontroller is extensively used in embedded systems due to its versatility and
efficiency. Here are detailed explanations of its key applications:

1. Keyboards

Application: Interface matrix keyboards with the 8051 for data entry in systems like
calculators, security systems, and ATMs.

Working Principle:

e A matrix keyboard has rows and columns connected to I/O ports.
e The microcontroller scans each row and column to detect a pressed key.

Example: 4x4 Matrix Keyboard Interface

e Rows (R0-R3) connected to Port 1 outputs.
e Columns (C0-C3) connected to Port 2 inputs.

Algorithm:
1. |Initialize ports.
2. Output logic LOW on each row sequentially.
3. Read column inputs to detect which key is pressed.
4. Decode the key based on the row and column combination.

ORG 0000H
MOV P1l, #0FFH ; Configure Port 1 as input (Rows)
MOV P2, #O0FFH ; Configure Port 2 as input (Columns)

CHECK: MOV P1l, #0FEH ; Set Row 0O LOW
NOP

MOV A, P2

CJINE A, #0FFH, FOUND

MOV P1, #0FDH ; Set Row 1 LOW
NOP

MOV A, P2

CINE A, #0FFH, FOUND

SJMP CHECK
FOUND: MOV P3, A ; Display pressed key on Port 3

SJMP CHECK
END



e This program scans each row and checks the columns to detect the pressed key.

2. Displays
Application: Interface 7-segment displays, LCDs, and LEDs for visual output.
A. 7-Segment Display

e Thedisplay is driven by GPIO ports using BCD codes.
e Common cathode or common anode configurations are used.

ORG 0000H

MOV Pl, #3FH ; Display '0O' on 7-seg
SJMP $

END

e This example sends the hexadecimal code 3F to display '0' on a common cathode 7-seg
display.

B. 16x2 LCD Display

e Controlled using 8-bit or 4-bit data mode.
e Commands and data are sent through GPIO pins.

Pin Configuration:

e RS (Register Select), RW (Read/Write), and E (Enable) connected to control pins.
e DO-D7 connected to data pins.

Command Examples:

e 0x38 - Initialize in 8-bit mode
e 0x0C - Display ON, Cursor OFF
e 0x01 - Clear Display

ORG 0000H

MOV P2, #38H ; Initialize LCD

CALL COMMAND

MOV P2, #O0CH ; Display ON, Cursor OFF
CALL COMMAND

MOV P2, #41H ; Display 'A'

CALL DATA

SJMP S

COMMAND: CLR P3.0

SETB P3.1
ACALL ENABLE
RET

DATA: SETB P3.0



CLR P3.1
ACALL ENABLE
RET

ENABLE: SETB P3.2
ACALL DELAY

CLR P3.2
ACALL DELAY
RET

END

e This code initializes an LCD and displays the character 'A'.

3. Pulse Measurement
Application: Measure pulse width and frequency using Timer 0 and Timer 1.
Working Principle:

e Use an external interrupt (INTO or INT1) to start and stop the timer.
e Count pulses using the timer’s overflow events.

ORG 0000H

MOV TMOD, #01H ; Timer 0, Mode 1

SETB ITO ; Configure INTO as falling edge trigger
SETB EXO ; Enable External Interrupt O

SETB EA ; Enable global interrupts

START: SETB TRO ; Start Timer

SJMP START

ORG 0003H ; INTO Interrupt Vector
CLR TRO ; Stop Timer

MOV A, TLO ; Store low byte of count
MOV B, THO ; Store high byte of count
RET

END

e This code measures the duration between two falling edges using Timer 0.

4. D/A and A/D Conversions
A. Digital-to-Analog (D/A) Conversion
Application: Generate analog signals for motor control, audio signals, and sensor simulation.

e DACO0808 IC is used with the 8051.
e Digital input (8 bits) is converted into an analog voltage.

ORG 0000H
MOV P1l, #0FFH ; Maximum digital value



SJMP S
END

e Sending 0xFF produces maximum output voltage from the DAC.

B. Analog-to-Digital (A/D) Conversion
Application: Interface sensors like temperature, pressure, and light intensity with the 8051.

e ADC0804 IC is commonly used.
e The microcontroller controls the start conversion (WR pin) and reads the digital output.

ORG 0000H

CLR P3.0 ; Start conversion (WR = 0)

SETB P3.0

WAIT: JB P3.1, WAIT ; Wait until conversion complete (INTR = 0)
MOV A, P1 ; Read digital value

SJIMP $

END

e This code starts the ADC conversion and reads the digital output from Port 1.

5. Multiple Interrupts

Application: Handle multiple simultaneous events like button presses, timers, and serial data
reception.

Interrupt Sources:

External Interrupt O (INTO) - Priority 1
Timer 0 Overflow - Priority 2

External Interrupt 1 (INT1) - Priority 3
Timer 1 Overflow - Priority 4

Serial Communication (RI/TI) - Priority 5

ok wnN e

Interrupt Vector Table:

e (Q003H-INTO

e (000OBH-TimerO

e (0013H-INT1

e (001BH-Timerl

e (0023H - Serial Communication

ORG 0000H

SETB EXO ; Enable External Interrupt O
SETB EX1 ; Enable External Interrupt 1
SETB ETO ; Enable Timer 0 Interrupt
SETB ET1 ; Enable Timer 1 Interrupt
SETB ES ; Enable Serial Interrupt



SETB EA ; Enable Global Interrupt

SJMP S

ORG
MOV
RET

ORG
MOV
RET

ORG
MOV
RET

ORG
MOV
RET

ORG
MOV
RET
END

0003H
P1l, #01H ; INTO Interrupt

000BH
P1, #02H ; Timer 0 Overflow

0013H
P1, #03H ; INT1 Interrupt

001BH
P1, #04H ; Timer 1 Overflow

0023H
P1, #05H ; Serial Interrupt

This program handles multiple interrupts and outputs a different value on Port 1 for each
interrupt source.

Summary

Keyboards: Interface matrix keyboards using GPIO ports and scanning techniques.
Displays: Drive 7-segment and LCD displays using BCD codes and control signals.

Pulse Measurement: Use timers and external interrupts to measure pulse width and
frequency.

D/A and A/D Conversions: Interface DAC0808 and ADC0804 for analog signal generation
and measurement.

Multiple Interrupts: Manage simultaneous events using external and internal interrupts
with priority control.



Unit V Serial Data Communication

Network Configurations — 8051 Data Communication Modes

8051 Microcontroller: Serial Data Communication

Serial data communication refers to transmitting data one bit at a time over a single
communication line, which reduces wiring and simplifies long-distance communication.
Unlike parallel communication (which sends multiple bits simultaneously), serial
communication is more efficient for embedded systems. In the 8051 microcontroller, serial
communication is handled by the Serial Control (SCON) register and Timer 1 (used for baud
rate generation). Data is sent and received using the SBUF register, and communication can
be either synchronous or asynchronous. The TXD (P3.1) pin is used for transmission, and
RXD (P3.0) is used for receiving data. Serial interrupts can also be enabled for efficient data

handling.

1. Network Configurations

Serial communication in embedded systems can follow different network configurations
depending on the application. The key configurations are:

A. Point-to-Point Communication
e Description: Direct communication between two devices using a dedicated connection.

o Example: Connecting an 8051 microcontroller to a computer using RS-232.
e Advantages: Simple, fast, and reliable for short distances.

B. Multi-Drop Communication (One-to-Many)

e Description: One device acts as the master, and multiple devices act as slaves, all connected
on a single communication line.

e Example: 8051 communicating with multiple sensors using RS-485.

e Advantages: Cost-effective for long distances with multiple devices.

C. Full-Duplex and Half-Duplex Communication

e Full-Duplex: Simultaneous transmission and reception of data using two separate lines (TXD
and RXD).



e Half-Duplex: Transmission and reception occur alternately over a single line.

D. Synchronous and Asynchronous Communication

e Synchronous: Transmitter and receiver share a common clock signal for synchronized data
transfer.

e Asynchronous: Each byte is sent with start and stop bits, and no common clock is needed
(used in 8051).

2. 8051 Data Communication Modes
The 8051°s UART module allows asynchronous serial communication using two pins:

e TXD (P3.1): Transmits data
e RXD (P3.0): Receives data

The communication is controlled using the SCON (Serial Control) register.

SCON Register Format (Bit Functions):

Bit Name Description

SMO Serial Mode Control Bit 0

SM1 Serial Mode Control Bit 1

SM2 Multiprocessor Communication Enable
REN Receive Enable

TB8 Transmit Bit 8 (9th bit in Mode 2 & 3)
RB8 Receive Bit 8 (9th bit in Mode 2 & 3)

Tl Transmit Interrupt Flag

O R N W b U1 OO

RI Receive Interrupt Flag

Data Communication Modes:

The 8051 supports 4 modes of serial communication:

Mode 0: 8-bit Shift Register (Synchronous Mode)

e Datais transmitted and received bit-by-bit using the TXD pin.
e Aclock signal is output through the RXD pin.
e Transmission speed: 1/12th of the oscillator frequency.

Use Case: Simple synchronous communication with peripherals.



Mode 1: 8-bit UART (Asynchronous Mode)
e Datais transmitted with 1 start bit, 8 data bits, and 1 stop bit.
e Baud rate is variable and determined by Timer 1.
e Commonly used for standard serial communication (RS-232).

Baud Rate Calculation:

Baud Rate=0Oscillator Frequency12x(256-TH1)Baud\ Rate = \frac{Oscillator\ Frequency}12 \times
(256 - TH1)}

For a 11.0592 MHz crystal and TH1 = OxFD, the baud rate is 9600 bps.

Mode 2: 9-bit UART (Fixed Baud Rate)

e Data frame consists of 1 start bit, 8 data bits, and 1 stop bit.
e 9th bit (TB8/RB8) can be used for parity or control information.
e Baud rateis fixed at 1/32 or 1/64 of the oscillator frequency.

Use Case: Multiprocessor communication.

Mode 3: 9-bit UART (Variable Baud Rate)

e Similar to Mode 2 but with a variable baud rate determined by Timer 1.
e Supports long-distance communication and higher speeds.

Baud Rate Generation using Timer 1

e Timer 1is configured in Mode 2 (8-bit auto-reload) to generate the desired baud rate.
e TH1 register is loaded with a value that sets the baud rate.

Serial Communication Example (Mode 1, 9600 Baud, Full Duplex)

ORG 0000H

MOV TMOD, #20H ; Timer 1 in Mode 2 (Auto-reload)
MOV TH1, #O0FDH Baud rate 9600 (11.0592 MHz)
MOV SCON, #50H Mode 1, REN enabled

SETB TR1 Start Timer 1

Ne Ne Ne N

MOV SBUF, #41H ; Transmit 'A'
WAIT TX: JNB TI, WAIT TX



CLR TI

WAIT RX: JNB RI, WAIT RX

MOV A, SBUF ; Receive data into Accumulator
CLR RI

SIMP $

END

e This program transmits the character 'A' and waits to receive data.

Multiprocessor Communication (Using SM2 Bit)

o SM2 bit enables Multiprocessor Communication Mode in Modes 2 and 3.
e When SM2 =1, the receiver ignores frames with the 9th bit = 0, allowing communication
only with specific devices.

Interrupt-Driven Serial Communication

e The Tl (Transmit Interrupt) flag is set when transmission is complete.
e The RI (Receive Interrupt) flag is set when a byte is received.
e Using interrupts allows non-blocking communication, improving efficiency.

Enable Interrupts:

SETB ES ; Enable Serial Interrupt
SETB EA ; Enable Global Interrupt

Summary

Network Configurations: Point-to-Point, Multi-Drop, Full-Duplex, and Half-Duplex.
Data Communication Modes:
o Mode 0: 8-bit synchronous shift register.
o Mode 1: 8-bit UART with variable baud rate.
o Mode 2: 9-bit UART with fixed baud rate.
o Mode 3: 9-bit UART with variable baud rate.
Baud Rate Generation: Controlled using Timer 1 in Mode 2.
Interrupts: Tl and Rl flags enable efficient, non-blocking communication.



