CONTENTS

Sl. Date Name of Experiment Page | Signature
No. No.
25/09/2024

1 Study of Mouse Interrupt - 33H

2 | 25/09/2024 | Access Screen Memory

3 | 16/10/2024 | Study of Video Interrupt 10H

4 | 16/10/2024 | Display System Date & Time

5 | 09/11/2024 | Multiplication Table using Command Line

Argument
6 | 09/11/2024 | Evaluate Arithmetic Expression




Study of Mouse Interrupt - 33H

Interrupt is the method of creating a temporary halt during program
execution and allows peripheral devices to access the microprocessor. The
microprocessor responds to that interrupt with an ISR (Interrupt Service
Routine), which is a short program to instruct the microprocessor on how to
handle the interrupt

Hardware and Software Interrupts — When microprocessors receive
interrupt signals through pins (hardware) of microprocessor, they are known
as Hardware Interrupts.

Software Interrupts — These are instructions inserted within the program
to generate interrupts. There are 256 software interrupts in the 8086
microprocessor. The instructions are of the format INT type, where the type
ranges from 00 to FF. The starting address ranges from 00000 H to 003FF H.

DOS Mouse Interrupt 33h

MS DOS is non-graphical command line based operating system.
However it supports mouse interfacing system calls. Mouse support is
provided by an application called MOUSE.COM. Mouse is widely used in
graphical applications and in games. DOS implements mouse interfacing
subsystem through software interrupt INT Ox33 call. Below are the list of
subroutines under this interrupt

AH =0 : Initialize mouse driver. Returns: AX = number of buttons
AH =1 :Turn mouse on
AH = 2 : Turn mouse off

AH = 3 : Report status. BX = Mouse button pressed (1 - left, 2 - right, 3 -
centre), CX = X-coordinate, DX = Y-coordinate

Call Interrupt using DOS.H

The geninterrupt() function invokes a software interrupt by specifying the
interrupt number. Software interrupts are used to signal the CPU to stop what
it's currently doing and execute a specific interrupt handler routine. In DOS,
many system-level operations like accessing hardware devices (disks,
keyboard, display) were managed through software interrupts.



Code:

#include<stdio.h>
#include<dos.h>
void initmouse()
{

_AX=0;
geninterrupt(0x33);
}

void showmouse()
{

_AX=1;
geninterrupt(0x33);
}
void hidemouse()

{

_AX=2;
geninterrupt(0x33);
}

void main()

{
int c,r,bt;

initmouse();

showmouse();

cirscr();

printf("Mouse on Screen");
do
{

_AX=3;
geninterrupt(0x33);
bt=_BX;

c=_CX/8;

r=_DX/8;
gotoxy(24,12);
printf("Mouse at %d col,%d row and Button %d",c,r,bt);

twhile(!kbhit());
hidemouse();
printf("Mouse is hidden");
getch();

}



Access Screen Memory

Video Memory

RAM in PC stores the information and programs at the time of PC
working. The microprocessor writes the information to be displayed on the
screen into the Video memory, whereas the display adapter circuitry transfers
this information from Video memory on to the screen. The more pixels are
displaying on-screen at once (higher resolution), the more Video RAM it takes
on the video card to track the colors for all of the pixels. And the more colors
we are displaying, the more RAM it takes to track the color for each pixel. A
64K segment of memory is assigned for use with text video modes. This
segment starts at address B8000000 and ends at B800:FFFF. In Mode 3, one

byte represents one character and next byte represents its color on the screen.

Screen Memory Address Mapping

Address Value
B8000000 First Character on screen
B8000001 Color of the First Character
B8000002 Second Character on screen
B8000003 Color of the Second Character
B8000004 Third Character on screen
B8000005 Color of the Third Character

*
*
*
B80OOOFAQD Color of the Last Character




Code:

#include<stdlib.h>
#include<conio.h>

#include<dos.h>

char far *s = (char far *)0xB8000000;

void showchar(int r, int c, char ch)
{

*(s+r*160+c*2)=ch;
}

void main() {
cirscr();
showchar(15,8,'l');
showchar(15,10,'M');
showchar(15,12,'A’);
showchar(15,14,'N');
getch();



Study of Video Interrupt 10H

BIOS INT 10H PROGRAMMING
> INT 10H subroutines are in the ROM BIOS of the 8086-based PC.

» Depending on the value put in AH many function associated with the

manipulation of screen text or graphics is performed.

» Among these functions, clearing the screen, changing the cursor position,

change the screen color and drawing lines on the screen.

The following table shows subroutine present in the Interrupt 10H

Function Function Parameters Return
code
Set video mode AH=00h AL = video mode AL = video
mode

BH = Page Number,

Set cursor position AH=02h DH = Row,
DL = Column
AX =0,
Get cursor position and shape | AH=03h BH = Page Number DH = Row,
DL = Column

AL = Character, BH = Page

Write character and attribute Number, B = Color,

iy AH=09h
at cursor position

CX = Number of times to
print character



https://mendelson.org/wpdos/videomodes.txt
https://en.wikipedia.org/wiki/BIOS_Color_Attributes

Code:

#include<stdio.h>
#include<conio.h>
#include<dos.h>
void setmode(int n)
{

_AH=0;

_AL=n;
geninterrupt(0x10);
}
void setcursor (char r,char c)
{

_AH=2;

_DH-=r;

_DL=c;
geninterrupt(0x10);
}

void myprint(char ch,char color)
{
_AH=9;
_AlL=ch;
_BH=0;
_CX=1;
_BL=color;
geninterrupt(0x10);
}

void main()

{
cirscr();
myprint('A’,11);
getch();
setmode(4);
printf("Number of AAGASC,DCS");
getch();
setcursor(10,20);
printf("IMAN");
getch();



Display System Date & Time

Code:
#include <dos.h>
#include <stdio.h>
#include<conio.h>
struct mydate
{

int year;

char day;

char month;
b
struct mytime
{

char hour;

char min;

char hund;

char sec;

b

void main()
{
struct mydate dt;
struct mytime tm;
getdate(&dt);
clrscr();
gotoxy(5,5);
printf("Date: %d:%d:%d",dt.day,dt.month,dt.year);
do
{
gettime(&tm);
gotoxy(5,10);
printf("Time: %d:%d:%d:%d",tm.hour,tm.min,tm.sec,tm.hund);
twhile( 'kbhit() );
getch();

Output:
Date: 14:10:2024

Time: 24:21:22:27_




Multiplication Table using Command Line Argument

Command-line arguments are simple parameters that are given on the
system's command line, and the values of these arguments are passed on to your
program during program execution. When a program starts execution without

user interaction, command-line arguments are used to pass values or files to it.

The most important function of C is the main() function. It is mostly

defined with a return type of int and without parameters.

We can also give command-line arguments in C. Command-line
arguments are the values given after the name of the program in the command-
line shell of Operating Systems. Command-line arguments are handled by the

main() function of a C program.

To pass command-line arguments, we typically define main() with two
arguments: the first argument(argc) is the number of command-line arguments

and the second(argv[]) is a list of command-line arguments.
void main(int argc, char *argv[]) { }

After coded the program we can save the file such as TABLE.C,
Give build all on compile menu. Then TABLE.EXE will be created on
destination directory. In file menu select os shell then control goes to command

prompt. There run the TABLE.EXE and give argument then it will run.



Code:

void main(int na,char *Ist[])

{
int n,i;
n=atoi(lst[1]);
for(i=1;i<=20;i++)
{
printf("%dx%d=%d\n",n,i,n*i);

-
pu |

xZ20=100

:NTURBOC3NSOURCE?> _




Evaluation of Arithmetic Expression

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

int evalvuate(char *expr) {
inti;

intcn =0;

int result = 0;

intsign=1;

char c;

for (i = 0; exprl[i] !="\0'"; i++) {
¢ = exprli];

if (isdigit(c)) {

cn=(cn *10) + (c-'0");

}

if (c=="+"]| c=="-"|| expr[i+ 1] =="'\0") {
result += sign * cn;

cn=0;

sign=(c=="")?-1:1;

}

}

return result;

}

int main() {

char exp[100];

int result;

printf("Enter an arithmetic expression: ");
fgets(exp, 100, stdin);

result = evalvuate(exp);
printf("Result: %d\n", result);
return O;

}



Output :

Enter an arithmetic expreszion: 10 + 25

Hesult: 35




