Theory of Computation

Notes By: J.JAGADEESAN.,
Asst. Professor of Computer Science

Arignar Anna Govt. Arts & Sci. College,
Karaikal

Theory of Computation — Unit-1

« Alphabets

o Strings

e Language

« Basic Operations on Language
o Concatenation
o Union
o Kleene Star

1. Alphabet (%)
Definition:

An alphabet is a finite, non-empty set of symbols. These symbols are the basic
building blocks used to construct strings and languages.

Examples:
o 2={0,1} - Binary alphabet
e 2={a,b,c, .., z} > Lowercase English letters
« 2={a, b}
e 2={xv,21,2,3}

Notes:

o The alphabet is denoted by Z (capital sigma).

o The alphabet must not be empty.

o Symbols in the alphabet are atomic (they cannot be broken down
further in formal language theory).

2. String (Word)
Definition:
A string is a finite sequence of symbols from an alphabet.

Examples (for Z = {a, b}):

"a"’ IIbII’ Ilabll’ Ilball’ Ilaabll’ Ilbaball
"" (empty string) is also a valid string, denoted by €

Notation:

o & =empty string (string of length 0)
o Length of a string w is denoted as |w|

Notes:

« Strings can be concatenated.
o Every string is made only from symbols in the given 2.
o Ifw="abc", then |w| =3.

3. Language

Definition:

A language is a set of strings formed using the symbols of an alphabet Z.
Examples:

. Lets={0,1}
o L={g0,1,00,01, 10, 11}
o L={w | wcontains equal number of 0’s and 1’s}
o L={w | wendsin 0}

« Finite language: L = {a, ab, abc}

« Infinite language: L={a" | n>0}={g, a, agq, aaa, ...}

Types:

» Finite Language — has a limited number of strings
« Infinite Language — contains infinitely many strings

4. Basic Operations on Languages

Languages can be manipulated using several operations. Here are the
fundamental ones:

4.1 Concatenation (LiL,)

Definition:
Concatenation of two languages Ly and L, is the set of strings formed by taking
any string from L; and appending any string from L,.

Notation:
Ly - Ly or simply LiL,

Formally:
LL={xy|x€ELandyEL}

Example:
Let Ly ={a, b}, L ={c, d}
- Lz = {ac, ad, bc, bd}

Properties:
« Concatenation is not necessarily commutative: LiL, # L,L; in general
« €gistheidentity element for concatenation: eL=Le =1L

4.2 Union (L, U Ly)

Definition:
The union of two languages Ly and L, is the set containing all strings that are in
either L,, L,, or both.

Notation:
LUL

Formally:
LUuL={x|x€Lorx€ELl,}

Example:
I-1 = {ab, a}l I—Z = {al b; C}
> L UlLy={ab, a, b, c}

Properties:

e Union is commutative: L; U L, =L, U L4
o Union is associative

4.3 Kleene Star (L)*

Definition:
The Kleene Star operation represents the set of all strings that can be formed
by concatenating zero or more strings from a language L.

Notation:
L*

Formally:
L*=U (L") forn=0to oo
Where:

L° = {e}
. L1=L
12=LL={xy | x,y € L}

Example:
L ={a}
- L* ={g, a, aq, aaaq, aaaa, ...}

L = {ab}
- L* = {g, ab, abab, ababab, ...}

Properties:

o Always includes €
e Infinite if L # {&}

Additional Concepts:

Power of a Language: L"

o« L°={g}

. L1=L

e L2=L-L

e L3=L-L-L

e« L"=n-times concatenation of L with itself
Kleene Plus (L*)

o Similar to Kleene Star, but excludes €
e L*=L-L*

Summary Table

Operation Symbol Meaning
Concatenation Lyl All strings formed by x € L, followed by y € L,
Union L U Ly Allstrings in either Ly, Ly, or both
Kleene Star L* All possible concatenations (0 or more times) of L
Kleene Plus L* All possible concatenations (1 or more times) of L

Unit Il - Regular Expressions & Deterministic Finite Automata (DFA)

1) Regular Languages at a Glance

Regular languages are the simplest robust class of formal languages. They can be
characterized equivalently by:

« Regular expressions (RES)

« Deterministic finite automata (DFAS)

« Nondeterministic finite automata (NFAS)
« &-NFAs (NFAs with e-moves)

« Right/left-linear grammars

All these models define exactly the same family: the regular languages.

2) Regular Expressions (RE)

2.1 Alphabet and Strings
« Alphabet (X): A finite, nonempty set of symbols (e.g., £ = {0,1} or {a,b}).
« String: Finite sequence of symbols from Z. The empty string is €.
« Language: Any set of strings over X.

2.2 Syntax of Regular Expressions (Inductive Definition)

Base cases (atomic REs):

1. @ is aregular expression denoting the empty language Q.
2. €is aregular expression denoting the language {}.
3. aisaregular expression for every symbol a € X, denoting {a}.

Recursive formation rules: If R and S are regular expressions, then so are:
2.2.1 (R)|(S) (union/alternation), denoting L(R) U L(S).
Meaning:

« If you have two regular expressions R and S,
o R | S means “strings that are in either L(R) or L(S) (or both).”
o L(R) means “the language defined by R” (set of strings R matches).

Example:

e R=cat— L(R)={"cat"}
e S=dog— L(S)={"dog"}
e« R|S—LR)U L(S)={"cat", "dog" }

This is called alternation because it gives you a choice.
2.2.2 (R)(S) (concatenation), denoting L(R) - L(S) = { xy : xeL(R), yeL(S) }.

Meaning:
« Take one string from L(R) and immediately follow it with one string from
L(S).
o That’s why we write L(R) * L(S) = { xy : x € L(R), y € L(S) }.

Example:
e« R=hi—>LR)={"hi"}
e S=there — L(S)={ "there" }
e« RS — { "hithere" }

IfR={"a","b" }and S={"x", "y" },
« RS ={"ax", "ay", "bx", "by" }.
2.2.3 (R)— Kleene Star*

Meaning:
e (R) * means “zero or more repetitions of strings from L(R).”
where:
o L(R)*= { &} (zero repetitions — empty string)
o L(R)!=L(R) (one repetition)
o L(R)?={xy:x€L(R),YyEe€L(R) } (two repetitions), and so on.
Example:
e R=a—>LR)={"a"}
e R*= { g, nan’ naau’ naaan, naaaan, }
If R ={"ab" },
« R*={¢g "ab", "abab", "ababab", ... }

o (R)* (Kleene star), denoting L(R)* = U_{k>0} L(R)"k, with L0 = {&}.

2.3 Shorthand and Precedence

Often write R|S instead of (R)|(S), and RS for (R)(S).

Kleene star has highest precedence, then concatenation, then union.

+ (Kleene plus): R = RR*.

Optional: R? = (RJe).

Character classes (e.g., [abc]) are conveniences; formally they expand by
union.

2.4 Semantics: Language Denotation L(R)
Defined by the inductive clauses above. Key points:

o ¢ €L(R)* always, because k=0 case gives «.
o 7= {e}* (non-intuitive but important!).
« &R =Reg =R (as languages, via concatenation with g).

2.5 Algebraic Laws (Useful Identities)
For all REs R,S, T (interpreting equality as language equivalence):

« Union: R|S = S|R (commutative); (R|S)|T = R|(S|T) (associative); RIR =R
(idempotent); R|® = R.

« Concatenation: (RS)T = R(ST) (associative); R® = @R = @; Re =e¢R =R.

« Distributive: R(S|T) = RS | RT; (R|S)T = RT | ST.

o Star: R**=R*; ¢ € R*; R*=¢ | RR*=¢| R*R.

o Arden’s Lemma (for linear language equations): If X = AX | B and € € A,
then the least solution is X = A*B.

2.6 Typical Design Patterns

« Strings over {0,1} with even number of 0s: (10101*)1.

« All strings not containing 11: (¢/0)(10)*1?.

« Strings over {a,b} ending with ab: (alb)*ab.

« Decimal integers without leading zeros: 0 | ([1-9][0-9]%).

2.7 Worked Examples

1. ¥={a,b}. Language: strings with at least one a and at least one b.
o One RE: (alb)*a(alb)b(alb) | (alb)*b(alb)a(a|b).
o Alternative (shorter but more advanced): (alb)*a(alab)b(a|b) |
(alb)*b(blba)a(alb).
2. ¥={0,1}. Language: binary numbers divisible by 3.

o Direct RE is tedious; better to build DFA for residues mod 3 and
(optionally) convert to RE (state-elimination or GNFA). This
illustrates practical limits of RE design vs. DFA construction.

2.8 Decision Properties (Regular Languages)

Emptiness: decidable (e.g., DFA reachability of a final state).
Finiteness: decidable.

Membership: linear-time in |input| via DFA.
Equivalence/Containment: decidable (e.g., via DFA minimization or
product construction + emptiness test).

3) From RE to Automata (High-Level)

Every RE can be converted to an e-NFA (e.g., Thompson construction). Then:

RE — &-NFA — NFA — DFA (subset construction) — minimized DFA.

This pipeline proves: REs and DFAs are equivalent in expressive power.

4) Deterministic Finite Automata (DFA)

4.1 Formal Definition

A DFA is a 5-tuple M = (Q, X, 9, qo, F) where:

Q: finite, nonempty set of states.

X finite input alphabet.

6: Q x X — Q: total transition function (exactly one next state for each
state/symbol pair).

qo € Q: start state.

F € Q: set of accept (final) states.

4.2 Computation and Acceptance

On input x = a:a2...a,, the DFA starts at qo and iteratively applies 0.

Let 87(q, x) (extended d) be defined inductively: 6°(q, €)=q; 6°(q, xa)=0(5"(q,
X), a).

Acceptance: x is accepted iff 67(qo, x) € F. The language of M, L(M), is the
set of all accepted strings.

4.3 Design Techniques

« Direct counting/parity (e.g., even number of 0s = 2 states toggling on 0).

« Modular arithmetic (e.g., residues mod k for divisibility properties).

« Remembering last k symbols (k+1 states often suffice for fixed-length
suffixes/prefixes).

« Product construction to combine constraints: states are pairs (p,q) from
machines M: and M.

4.4 Closure Properties via Automata
Regular languages are closed under:

« Union, Intersection, Difference (product DFA + appropriate accepting sets).
« Complement (swap accepting/non-accepting states in a complete DFA).

« Concatenation, Kleene star (easiest by NFA/e-NFA constructions).

. Reversal (via NFA on reversed edges; or GNFA/RE methods).

« Homomorphism & inverse homomorphism.

4.5 Equivalence of DFA and NFA

« Forany NFA N, there is a DFA D such that L(D)=L(N) (subset
construction). DFA states correspond to subsets of N’s states.

« Nondeterminism does not increase expressive power for finite automata, only
potential succinctness.

4.6 DFA Minimization

Goal: find a DFA with the fewest states recognizing the same language.
Two mainstream views:

1. Table-filling (distinguishability) algorithm:
o Mark pairs (p,q) where one is accepting and the other not.
o Propagate markings: (p,q) is distinguishable if some a€X leads to a
marked pair (3(p,a), 8(q,a)).
o Unmarked pairs are equivalent and can be merged.
2. Partition-refinement (Hopcroft):
o Start with P = {F, Q\F}; split blocks using transitions until stable.
o Hopcroft’s algorithm runs in O(|X] |Q| log |Q|).

Myhill-Nerode theorem (conceptual foundation):

« Alanguage L is regular iff it has finitely many Myhill-Nerode equivalence
classes.

« Each class corresponds to a unique state in the minimal DFA; two strings X,y
are equivalent iff for all z, xzeL & yz€eL.

4.7 Proving Nonregularity (Contrast)
Although beyond DFA per se, it’s vital to know limits:

« Pumping lemma for regular languages: If L is regular, there exists p
(pumping length) such that any string seL with [s>p can be decomposed
s=xyz with |xy|<p, |y}>1, and for all i>0, xy"*iz € L.

« Typical use: to show certain languages (e.g., {a"n b*n : n>0}) are not
regular.

5) Constructions & Proof Sketches
5.1 Thompson-Style Constructions (RE — €-NFA)

« Atom:a=>q—a—r.

« Union: new start with ¢ to starts of R and S; new final with ¢ from their
finals.

« Concatenation: connect final of R to start of S with «.

« Star: new start/final; € to R’s start and to new final; € from R’s final back to
R’s start and to new final.

5.2 Subset Construction (NFA — DFA)

o Start set: e-closure({qo}).

« For each DFA state TCQ NFA and symbol a, transition to &-
closure(U_{qeT} & NFA(q,a)).

« Accepting if T contains any accepting NFA state.

5.3 Complement / Intersection (DFA-level)

« Complement: Ensure DFA is complete (every state has all X-transitions).
Then flip accepting status.

« Intersection: Product automaton with states (p,q), start (po,qo), accepting
FixFa.

6) Comprehensive Examples

Example A: Even number of Os over 2={0,1}

. RE:(10101%)1

« DFA:
o Q={E,O}, start E, F={E}
o 0o(E,0)=0, 8(0,0)=E; o(E,1)=E, 6(0,1)=0.

Example B: Strings over {a,b} with no substring abb

« Track the longest suffix that is also a prefix of "abb": states for ¢, a, ab, and a
dead state for reaching abb.
« Accept all except the dead state.

Example C: Binary numbers divisible by 3

. States: residues {0,1,2}; start 0; F={0}.
« O(r,b)=(2r + b) mod 3 for be{0,1}.

Example D: Ends with 01 over {0,1}

. RE: (0j1)*01
o DFA: states for how much of the suffix we’ve matched: ge, q0, q01(accept).

7) Equivalence Proof Outline (RE < DFA)

1. RE = &-NFA via structural induction (Thompson). Therefore L(RE) is
accepted by some NFA.

2. e-NFA = DFA via subset construction. Hence L(RE) is accepted by some
DFA.

3. DFA = RE: Use state-elimination or GNFA to produce an equivalent RE.
Thus both formalisms characterize the same languages.

8) Minimization Example (Sketch)
Given a DFA with states {A,B,C,D}, £={0,1}, F={C,D}:

1. Partition Po = {{C,D},{A,B}}.

2. Split using transitions until stable, e.g., if from A on 0 goes to C (accept) but
from B on 0 goes to B (reject), then A and B are distinguishable.

3. Merge only truly indistinguishable states to obtain the minimal DFA.

9) Practical Tips for Exams/Design

« Start with informal idea of what needs to be remembered (parity, last k
symbols, modulo state, forbidden pattern) and map that to states.

« Prefer DFA for counting and modular properties; prefer RE for
local/positional constraints.

« When combining constraints, use product and then minimize.

« For simplification of REs, apply identities (idempotence, distributivity,
Arden’s lemma).

10) Short Exercise Set (Self-Check)

Give an RE for strings over {a,b} where the number of a’s is even.
Design a DFA over {0,1} for strings that contain 001 as a substring.
Prove closure of regular languages under reversal.

Convert the RE (a|b)*abb to a DFA via e-NFA and subset construction.
Use the pumping lemma to show {0”p : p is prime} is not regular.

agbrwnE

Unit Il Regular Languages

Non-Deterministic Finite Automata (NFA) — Relationship Between NFA and
DFA — Transition Graphs (TG) — Properties of Regular Languages— The Relationship
Between Regular Languages and Finite Automata—Kleene's Theorem

Regular Languages

A regular language is a formal language that can be described using a finite set of rules. It is
recognized by finite automata and can be expressed using regular expressions. Regular languages
are the simplest type of languages in the Chomsky hierarchy and are important because they
describe many real-world problems such as searching for words in text, designing compilers, and
validating input formats. For instance, the set of all binary strings that contain an even number of

Os is a regular language, since it can be represented using a simple automaton or expression.

One of the most important properties of regular languages is closure. They are closed under
operations such as union, intersection, concatenation, complement, reversal, and Kleene star. This
means that if we combine two regular languages using these operations, the result will still be a
regular language. Another significant feature is that every regular language can be represented in
multiple equivalent forms: as a DFA, an NFA, a transition graph, or a regular expression.
However, regular languages also have limitations. They cannot represent languages requiring
memory of past inputs, such as balanced parentheses or palindromes. This limitation helps in
distinguishing regular languages from more complex ones like context-free or context-sensitive

languages.

Introduction of Finite Automata

Finite automata are abstract machines used to recognize patterns in input sequences,
forming the basis for understanding regular languages in computer science.
» Consist of states, transitions, and input symbols, processing each symbol step-by-step.
» If ends in an accepting state after processing the input, then the input is accepted,;
otherwise, rejected.
» Finite automata come in deterministic (DFA) and non-deterministic (NFA), both of
which can recognize the same set of regular languages.

» Widely used in text processing, compilers, and network protocols.

4 P In | Input

Automata
¢ States of
Automata
2 b On
Oy © |_________ On | Output

Figure: Features of Finite Automata

Features of Finite Automata

> Input: Set of symbols or characters provided to the machine.

> Output: Accept or reject based on the input pattern.

> States of Automata: The conditions or configurations of the machine.
> State Relation: The transitions between states.

> Output Relation: Based on the final state, the output decision is made.
Formal Definition of Finite Automata

> A finite automaton can be defined as a tuple:

e Q — Set of all states (finite, non-empty).
Example: Q={q0,q1,92}.
e X (Sigma) — Input alphabet (finite set of symbols).
Example: ¥={0,1}.
e ((or qo) — Initial/start state (an element of Q).
Example: qo is the starting state.
e F — Set of final/accepting states (subset of Q).
Example: F={q2}.
e 0 (delta) — Transition function.
o For DFA: 6:QxX—Q
o For NFA: §:Qxz—2% (maps to a set of states).

So formally, a finite automaton (FA) is defined as a 5-tuple:

M=(Q,%,3,q0,F)M = (Q, %, 8, q 0, F)M=(Q,Z,5,q0,F)

Where each symbol has the meaning listed above.

Types

of Finite Automata

There are two types of finite automata:

+* Deterministic Finite Automata (DFA)

+** Non-Deterministic Finite Automata (NFA)

1. Deterministic Finite Automata (DFA)
A DFA is represented as {Q, Z, g, F, 8}. In DFA, for each input symbol, the machine

transitions to one and only one state. DFA does not allow any null transitions,

meaning every state must have a transition defined for every input symbol.
DFA consists of 5 tuples {Q, 2, q, F, &}.

Example:

. set of all states.

. set of input symbols. (Symbols which machine takes as input)

Q
2
q:
F
0

Initial state. (Starting state of a machine)

. set of final state.
: Transition Function, definedas 6: Q X 2 --> Q.

Construct a DFA that accepts all strings ending with 'a’.

Given:
>

Q
F

= {a, b},

={q0, g1},

={q1}

Fig 1. State Transition Diagram for DFA with Z = {a, b}

State\Symbol | @ | b
q0 ql|qo
ql ql|qo

In this example, if the string ends in 'a’, the machine reaches state g1, which is an
accepting state.

2) Non-Deterministic Finite Automata (NFA)

A Non-Deterministic Finite Automata (NFA) is a computational model used to recognize
regular languages. In an NFA, for a given state and input symbol, the machine can move to zero,
one, or multiple states. This means the path taken by the automaton is not uniquely determined,
unlike in a DFA. An important feature of NFASs is the presence of e-transitions, which allow the
automaton to change states without consuming any input. This property makes NFAs more

flexible and easier to design than DFAs.

Although NFAs appear more powerful than DFAs, both have the same expressive power.
Every NFA can be converted into an equivalent DFA that accepts the same language. However,
this conversion may cause an exponential increase in the number of states, making DFAs less
compact. NFAs are mainly used for theoretical descriptions and for simplifying the construction
of automata, whereas DFAs are preferred in practice for their determinism in implementation.
Thus, NFAs play a key role in automata theory by serving as an intermediate step in designing

automata from regular expressions.

NFA is similar to DFA but includes the following features:

e It can transition to multiple states for the same input.

e It allows null () moves, where the machine can change states without consuming any
input.

Example:

Construct an NFA that accepts strings ending in 'a’.

Given:
2 ={a, b},
Q =1{q0, g1},
F={q1}

Fig 2. State Transition Diagram for NFA with % = {a, b}

State Transition Table for above Automaton,

State\Symbol a b
qo {90,91} | 90
ql P ¢

In an NFA, if any transition leads to an accepting state, the string is accepted.

Relationship Between NFA and DFA

1. Basic Concept

e Both Deterministic Finite Automata (DFA) and Non-deterministic Finite Automata
(NFA) are models of computation used to recognize regular languages.

e Even though NFAs appear more powerful because they allow multiple transitions
(including e-moves), any NFA can be converted into an equivalent DFA that recognizes
the same language.

o Therefore, NFA and DFA are equivalent in expressive power — they both accept
exactly the set of regular languages.

2. Structural Differences

« DFA:
o For each state and input symbol, exactly one transition is defined.

o No e-moves are allowed.
Easier to implement in hardware/software because of determinism.

o For astate and input, zero, one, or multiple transitions may be possible.
o &-moves (state changes without consuming input) are allowed.
o Easier to design because of flexibility.

Transition Graphs (TG)

Transition Table :

Transition function(9) is a function which maps Q *) into Q . Here 'Q’ is set of
states and ') ' is input of alphabets. To show this transition function we use table
called transition table. The table takes two values a state and a symbol and returns
next state.

A transition table gives the information about -

Rows represent different states.

Columns represent input symbols.

Entries represent the different next state.

The final state is represented by a star or double circle.
The start state is always denoted by an small arrow.

agkrwpbPE

Example 1 -
This example shows transition table for NFA(non-deterministic finite automata) .

0 0
1 R 0,1
q0 ql
0
Transition Graph

Present State Next State Of Input 0 Next State For Input 1
->q0 qo gql
ql q1, g2 q2
*q2 q1 Nill

Transition Table

Explanation of above table -

1. First column indicates all the present states ,Next for input O and 1 respectively.

2. When the present state is g0, for input O the next state will become g0. For input
1 the next state is q1.

3. When the present state is g1, for input O the next state is g1 or g2, and for 1 input
the next state is g2.

4. When the current state is g2 for input O, the next state will become g1, and for 1
input the next state will become Nil.

5. The small straight arrow on g0 indicates that it is a start state and circle on to g3
indicates that it is a final state.

Example 2 :
This example shows transition table of DFA(deterministic finite automata).

0,1

Present State Next State Of Input 0 Next State For Input 1
->q0 ql ql
*ql ql ql

Explanation of above table -

1. First column indicates all the present states, Next for input O and 1 respectively.

2. When the current state is g0, for input 0 the next state will become g1 and for
input as 1 the next state is q1l.

3. When the current state is ql, for input 0, the next state will become g1, and on 1
input the next state is ql.

4. The small straight arrow on qO indicates that it is a start state and circle on to g3
indicates that it is a final state.

Properties of Regular Languages

Regular languages exhibit several important properties that make them very useful. The
most important ones are closure properties. Regular languages are closed under union,
concatenation, and Kleene star, which means that combining two regular languages using these
operations results in another regular language. They are also closed under intersection, difference,
complementation, and reversal, further expanding their usefulness. These properties make it easier

to construct new regular languages from existing ones.

Another key property is that regular languages can be represented in multiple equivalent
ways: as regular expressions, as DFAs or NFAs, or using transition graphs. However, regular
languages have limitations—they cannot express constructs that require an unbounded memory.
For example, the language of balanced parentheses { a”n b*n | n > 0 } iS not regular, because
a finite automaton cannot keep track of the exact number of as to match with os. To prove that a
language is not regular, the pumping lemma for regular languages is often used. This property-
based reasoning is fundamental in distinguishing regular languages from more powerful ones like

context-free languages.

The Relationship between Regular Languages and Finite Automata

The relationship between regular languages and finite automata is central to automata
theory. Every regular language can be recognized by some finite automaton, and every finite
automaton corresponds to a regular language. This means that the two concepts are essentially
equivalent. Regular expressions provide an algebraic way of describing languages, while finite
automata provide a machine model that accepts them. This duality forms the foundation for both

theoretical studies and practical applications.

In practical terms, finite automata are often used to implement regular languages in

computer systems. For example, in lexical analysis (the first phase of a compiler), patterns for

tokens are described using regular expressions. These regular expressions are then converted into
finite automata for efficient recognition of tokens. Thus, finite automata provide the
computational mechanism, and regular languages provide the theoretical framework, establishing

a strong link between the two.

Relationship
The relationship between FA and RE is as follows —
Can be | Regular Can be
Converted I expression converted to
Deterministic NFA with
finite < moves
automata
Can be Canbe
converted converted to
NFA without
e IMoves

The above figure explains that it is easy to convert

. RE to Non-deterministic finite automata (NFA) with epsilon moves.

. NFA with epsilon moves to without epsilon moves.

. NFA without epsilon moves to Deterministic Finite Automata (DFA).
. DFA can be converted easily to RE.

Kleene’s Theorem

Kleene’s Theorem, named after Stephen C. Kleene (1956), is a fundamental result in
Automata Theory.
It establishes the equivalence between:

1. Regular Expressions (RE) — algebraic representation of patterns.

2. Finite Automata (FA: DFA/NFA/e-NFA) — machine model for recognizing patterns.

3. Regular Languages (RL) — the set of languages described by regular expressions and
accepted by finite automata.

A language is regular < it can be described by a regular expression < it can be accepted by a
finite automaton.

Statement of the Theorem
Kleene’s Theorem has two parts:

1. PartI(RE — FA):

If a language can be described by a regular expression, then there exists a finite
automaton (DFA or NFA) that accepts it.
2. PartII (FA — RE):

If a language is accepted by a finite automaton, then there exists a regular expression
describing it.

Thus, Regular Expressions and Finite Automata are equivalent in expressive power.

Proof Idea

Proof of Part | (RE — FA):

We use structural induction on regular expressions.

o Base cases:

o RE = a — simple automaton with transition on a.
o RE = ¢ — automaton with start = final state.
o RE = ¢ — automaton with no accepting states.
e Induction steps (for complex REs):
o If automata exist for RE1 and RE2, then:
= RE1 + RE2 (union) — build automaton with -moves to both.

= REI1-RE2 (concatenation) — connect automata in sequence with e-
transition.

= RE1* (Kleene star) — add e-loops from final to start state.

1 Hence, any RE can beconverted into an NFA (later to DFA).

We use the state elimination method:

o Start with a finite automaton (DFA/NFA).

o Gradually remove states, while replacing transitions with equivalent regular expressions.
e Continue until only two states remain (start and final).

e The resulting label on the transition is the regular expression describing the language.

I Hence, any FA can be converted into an equivalent RE.

Example
1. RE —- FA
*
RE = (a+b) ab
Construct NFA:

o Start — loop on a or b (for (a+b) *).
o Then accept strings ending with ab.

2. FA—>RE
Consider DFA for strings ending with “01”:
-=> (q0) --0--> (q0)
(q0) --1--> (qgql)
(ql) --0--> (q0)
(ql) --1--> ((92))

Eliminate states to derive RE: (0+1) *01.

Importance of Kleene’s Theorem

1. Equivalence Proof — Shows that regular expressions and finite automata are just two
representations of the same class of languages.

2. Compiler Design — In lexical analysis, patterns of tokens are written as REs but
implemented as automata.

3. Mathematical Foundation — Establishes the concept of regular languages and their
closure properties.

4. Practical Applications — Search engines, text editors, and network protocols rely on this

equivalence.

For certain expressions like:- (a+b), ab, (atb)*; It's fairly easier to make the Finite
Automata by just intuition as shown below. The problem arises when we are provided with a
longer Regular Expression. This brings about the need for a systematic approach towards Finite
Automata generation, which Kleene has put forward in Kleene's Theorem. For any Regular
Expression r that represents Language L(r), there is a Finite Automata that accepts same
language.

RE=a+b 38 RE = (a+b)* (:IB‘}
- 2= m
G 6
el W Nt/

b

RE = ab

. PN /_-\
[A\ 8 J@al B :
—{(A)—(e)——()

https://www.geeksforgeeks.org/theory-of-computation/introduction-of-finite-automata/
https://www.geeksforgeeks.org/theory-of-computation/introduction-of-finite-automata/
https://www.geeksforgeeks.org/theory-of-computation/introduction-of-finite-automata/
https://www.geeksforgeeks.org/dsa/write-regular-expressions/
https://www.geeksforgeeks.org/dsa/write-regular-expressions/
https://www.geeksforgeeks.org/dsa/write-regular-expressions/

UNIT - IV NOTES : Non-Regular Languages and Context Free
Grammars

Non-Regular Languages and Context Free Grammars Pumping Lemma for Regular
Grammars — Context-Free Grammars (CFG)

1. Non-Regular Languages

Non-regular languages are those languages that cannot be recognized by any finite
automaton because they require more computational power than finite memory can offer.
Regular languages are limited to simple, repeating, or fixed-pattern structures, whereas non-
regular languages often involve counting, matching, or balancing different symbols—tasks
that require unlimited memory. A typical example is the language L = {a"b» | n > 0}, which
consists of strings where the number of a’s must exactly match the number of b’s. A finite
automaton cannot verify this condition because it cannot store the count of a’s before reading
the corresponding b’s. Other examples include {017}, {ww | w € {0,1}*}, and {a"brc"}, all of
which require tracking and comparing portions of the string. Because of such characteristics,
these languages cannot be expressed using regular expressions or regular grammars, making

them fundamentally non-regular.

Characteristics

e Requires memory to count or match symbols (FA has no memory).
« Often involves balanced, nested, or matched patterns.

Common examples of Non-Regular Languages

1. L={a"b"|n>0}
(same number of a’s followed by same number of b’s)
2. L={0"1"|n>0}
3. L={ww|w e{0,1} }*
(string repeated twice)
4. L={a"b"c"|n=>0}

2. Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages is a fundamental theoretical tool used to
prove that a given language is not regular. The lemma states that for any regular language
there exists a constant called the pumping length such that every sufficiently long string in
the language can be divided into three parts, X, y, and z, in such a way that repeating the
middle portion y any number of times will still produce strings within the language. These

conditions hold for all regular languages because finite automata must eventually repeat

states when processing long inputs, causing a loop that can be “pumped.” The lemma is most
commonly used as a proof-by-contradiction: we assume a language is regular, apply the
pumping conditions, and demonstrate that pumping leads to a string that violates the language
definition. If such a contradiction occurs, the language cannot be regular. Thus, the pumping
lemma serves as a mathematical criterion to distinguish regular languages from non-regular

ones.

Statement

If L is a regular language, then there exists a constant p (pumping length), such that any
string s in L with |s| > p can be divided into three parts:

s = Xyz, satisfying:

1. xyl<p
2. ly|>1
3. Foralli>0,xyz€ L

Purpose

e Mainly used to prove non-regularity by contradiction.

Standard Steps in Pumping Lemma Proof

Assume L is regular.

Let p be pumping length.

Choose a string s € L with |s| > p.

Split s = xyz satisfying lemma conditions.

Show that some pumped string xy'z € L for some i (usually i = 0 or 2).
Contradiction = L is not regular.

ogakrownE

Example: Prove L ={a"b" | n>0} is not regular

To show how the pumping lemma works in practice, consider the language L = {ab" | n
2 0}, which requires equal numbers of a’s and b’s. Assuming L is regular, the pumping
lemma gives us a pumping length p. We choose the string s = arbPp, which is definitely in the
language. According to the lemma, this string can be divided into three parts xyz, where y
lies entirely within the segment of a’s and contains at least one a. When we pump the string
by removing y (i = 0), the number of a’s decreases while the number of b’s remains
unchanged, making the resulting string invalid for L. This contradiction proves that the
language cannot be regular. This method is widely used to demonstrate non-regularity of

languages that require counting or matching patterns.

1. Assume L is regular.
2. Let p be pumping length.

Choose s = ar br.

y is part of first p symbols — consists only of a’s.
Pump down (i = 0):

xy°z = ak b? where k <p

6. Number of a’s # number of b’s = notin L

7. Contradiction = L is not regular.

ok w

3. Context-Free Grammars (CFG)

A Context-Free Grammar (CFG) is a formal system used to generate and describe
context-free languages, which are more powerful than regular languages. A CFG consists of
a set of variables (non-terminals), terminals (symbols of the language), production rules, and
a starting symbol. The production rules can replace a single non-terminal with a string of
terminals and non-terminals, allowing the grammar to build complex, hierarchical patterns.
This gives CFGs the ability to describe languages with nested or balanced structures, such
as mathematical expressions, programming language syntax, and well-formed parentheses.
For example, the language {arb"} can be generated by the grammar S — aSb | ab, where
each application of a production rule maintains balance between the number of a’'s and b’s.
Thus, CFGs provide a structured method for defining languages that cannot be expressed

using regular grammars.Definition

A CFG is a 4-tuple:
G=(V,T,S,P)
where

e V —Variables (non-terminals)

e T —Terminals

e S - Start symbol

e P — Productions of the form A — «
(AeEV,ae(VUT)

CFG Examples

1. Grammar for L={a"b" |n>1}

S - aSb | ab
2. Grammar for Balanced Parentheses

S - S8SS | (S) | ¢
3. Grammar for Palindromes over {0,1}

S - 0S0 | 181 | 0 | 1 | ¢
4. Grammar for { a"b™ | nm=>1}

4. Context-Free Languages (CFL)

Context-Free Languages (CFLs) are the class of languages generated by Context-Free
Grammars. They are recognized by Pushdown Automata, which are similar to finite
automata but equipped with an auxiliary stack that gives them additional memory for
handling recursive and nested structures. CFLs are powerful enough to describe
programming constructs, expression parsing, and hierarchical data formats. Important
closure properties of CFLs include closure under union, concatenation, and Kleene star,
which means that combining CFLs in these ways will still result in a CFL. However, CFLs are
not closed under intersection, complement, or difference, meaning combining two CFLs
using these operations may lead to a non-context-free language. These properties help
classify languages and determine whether they can be processed using pushdown automata
or generated using context-free grammars.

e Closed under: e Not closed under:
v Union X Intersection
v’ Concatenation X Complement
v Kleene closure X Difference

5. Pumping Lemma for Context-Free Languages (Just Introduction)

The Pumping Lemma for Context-Free Languages provides a method for proving
that a language is not context-free. Similar to the regular pumping lemma, it states that long
enough strings in a context-free language can be decomposed and “pumped,” but the
decomposition involves five parts: u, v, X, y, z, with certain constraints. Pumping the v and y
segments simultaneously (either removing them or repeating them) must still produce strings
within the language. This lemma is particularly useful for proving that languages requiring
simultaneous counting of three or more symbols, such as {arbncn}, are not context-free.
Unlike regular languages, the stack in a pushdown automaton allows tracking of only one
type of nesting or counting at a time, so languages requiring multiple parallel counts fail to
satisfy the lemma. Thus, the pumping lemma is an essential tool for identifying the limitations

of context-free languages.Statement

If L is context-free, any string s with [s| > p can be written as:
S = uvxyz, such that
1. |vxyl<p
2. vy|>1
3. Vi>0,uv'xyz€ L
Example of Non-CFL
L={a"b"c"|n>0}
Cannot be generated by CFG.

6. Difference Between Regular and Context-Free Grammars

Feature | Regular Grammar CFG
Power Less powerful More powerful
Automata | Finite Automata Pushdown Automata
Memory | No stack One stack
Handles | Simple patterns Nested, balanced structures

Unit V: PDA and Context-Free Languages

Deterministic And Non-Deterministic Pushdown Automata (PDA) — Parse Trees —

Leftmost Derivation — Pumping Lemma for CFL — Properties Of CFL

1. Pushdown Automata (PDA) and Context-Free Languages (CFL)

A Pushdown Automaton (PDA) is an abstract computational model used to recognize
Context-Free Languages (CFLs). PDAs are similar to finite automata but are more
powerful because they use an extra storage called a stack. This stack allows the machine to
keep track of nested structures such as parentheses, recursive patterns, and other non-regular
constructs. A language is said to be context-free if it can be generated by a Context-Free
Grammar (CFG). PDAs and CFGs are equivalent in power: for every CFG there exists a
PDA that accepts the same language, and vice versa. The stack plays a crucial role in

managing the variable-length memory needed to process CFLs.

« PDA is a finite automaton equipped with an additional memory called a stack.
« PDA is used to recognize Context-Free Languages (CFL).

» Stack allows handling of recursive patterns and nested structures.

« Every CFL can be recognized by some PDA.

o PDA and CFG are equivalent in computational power.

« PDA operations: push, pop, and read input symbol.

2. Deterministic PDA (DPDA)

A Non-Deterministic PDA (NPDA) is a PDA where multiple transitions may be possible
for the same state, input symbol, and stack symbol. NPDAs are more powerful than DPDAs
because they can “guess” the correct path to accept a string. Many natural CFLs like
palindromes, anbncn, and balanced parentheses are recognized by NPDAs.
A Deterministic PDA (DPDA) has at most one possible move for every combination of the
current input symbol, stack top, and state. DPDAs cannot use ¢-transitions freely if they
cause ambiguity. DPDAs accept only a proper subset of CFLs called Deterministic
Context-Free Languages (DCFL). DCFLs are recognized by LR parsers (used in

compilers). Every DPDA is also an NPDA, but the reverse is not true.

« At most one transition is possible for each combination of:
(state, input symbol, stack top).
o Does NOT allow ambiguous g-moves if they create multiple choices.
o Accepts Deterministic Context-Free Languages (DCFL).
o DCFL c CFL (proper subset).
o Used in LR parsing (bottom-up parsing).
o Less powerful than NPDA.

3. Non-Deterministic PDA (NPDA)

A parse tree (or derivation tree) is a hierarchical tree representation of how a string is
generated using a CFG. The root of the tree is the start symbol, internal nodes are non-
terminals, and leaf nodes are terminals. Parse trees illustrate the structure of a string and show
how grammar rules are applied step by step. They help detect ambiguities: if a string has two
different parse trees, the grammar is ambiguous. Parse trees are widely used in syntax

analysis in compilers and natural language processing.

« Can have multiple transitions for the same input and stack conditions.
« More powerful than DPDA.
e Can “guess” the correct path of computation.
o Can use e-transitions freely.
o Able to accept all CFLs.
« Example languages accepted:
o {amb"}
o Balanced parentheses
o Palindromes

4. Parse Trees

A leftmost derivation is a method of generating a string from a grammar where in every
step, the leftmost non-terminal in the current string is expanded first. This creates a
predictable order of applying production rules and avoids confusion during parsing. Leftmost
derivation is used by top-down parsing methods such as LL parsers. A grammar is called
unambiguous if every string in the language has only one possible leftmost derivation;

otherwise, it is ambiguous.

o A tree representation of derivation of a string in a grammar.
e Root node — Start symbol.

o Internal nodes — Non-terminals.

o Leafnodes — Terminals.

« Shows structure and order of derivations.

« Helps detect ambiguity in grammar.

« Forms the basis of syntax analysis in compilers.

5. Leftmost Derivation

« Derivation where the leftmost non-terminal is expanded first.

« Used in top-down parsing (e.g., LL parsers).

« Helps maintain a unique order of production applications.

« If a string has more than one leftmost derivation — grammar is
ambiguous.

« Produces a corresponding parse tree.

6. Pumping Lemma for CFL

The Pumping Lemma for CFLs is a theoretical tool used to prove that certain languages
are not context-free. It states that for every context-free language, there exists a constant p

such that any string s with length > p can be split into five parts S = uvxyz, satisfying:

v andy are the “pumping” parts,
[vxy| < p (the middle portion is short),
[vy| > 0 (something must be pumped),

> w0 e

For all i > 0, uv'xy'z must also belong to the language.
By showing that a language violates these conditions, we can prove it is not context-

free. Examples of non-CFLs include {a"b"c} and {a"b"c?"}.

« Used to prove that languages are NOT context-free.
« States: For any CFL, long strings (length > p) can be split into uvxyz.
« Conditions:
o |vxy|<p
o |vy|>0
o Foralli>0:uvxyz €L
o Vandy are the “pumping segments.”
o Useful to show languages like {a"b“c"} are not CFL.

7. Properties of CFL
Closure Properties
v’ Closed under:

« Union

« Concatenation

« Kileene star

« Reversal

« Intersection with Regular Languages

X Not closed under:

« Intersection
« Complement
« Difference

Decidability Properties

« Emptiness — decidable

o Membership — decidable (CYK algorithm)
+ Finiteness — decidable

« Equivalence of CFLs — undecidable

o Ambiguity of a grammar — undecidable

