
J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

INTRODUCTION TO PROBLEM SOLVING USING C
Module-2

Character Set, Structure of a ‘C’ Program, Data Types, Operators, Expressions, Assignment

Statement, Conditional Statements, Looping Statements, Nested Looping Statements, Multi

Branching Statement (Switch), Break and Continue, Differences between Break and Continue,

Unconditional Branching (Go to Statement)

C - PROGRAM STRUCTURE

A C program basically consists of the following parts:

 Preprocessor Commands

 Functions

 Variables

 Statements & Expressions

 Comments



Let us look at a simple code that would print the words "Hello World":

#include <stdio.h>

int main()

{

/* my first program in C */

printf("Hello, World! \n");

return 0;

}

1. The first line of the program #include <stdio.h> is a preprocessor command, which tells a C

compiler to include stdio.h file before going to actual compilation.

2. The next line int main() is the main function where the program execution begins.

3. The next line /*...*/ will be ignored by the compiler and it has been put to add additional

comments in the program. So such lines are called comments in the program.

4. The next line printf(...) is another function available in C which causes the message "Hello,

World!" to be displayed on the screen. 5. The next line return 0; terminates the main() function and

returns the value 0.

C - Data Types

 Data types in c refer to an extensive system used for declaring variables or functions of

different types. The type of a variable determines how much space it occupies in storage and how

the bit pattern stored is interpreted.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

The types in C can be classified as follows −

Sr.No. Types & Description

1
Basic Types

They are arithmetic types and are further classified into: (a) integer types and (b)
floating-point types.

2
Enumerated types

They are again arithmetic types and they are used to define variables that can only
assign certain discrete integer values throughout the program.

3
The type void

The type specifier void indicates that no value is available.

4
Derived types

They include (a) Pointer types, (b) Array types, (c) Structure types, (d) Union types and (e) Function
types.

The array types and structure types are referred collectively as the aggregate types. The type of a

function specifies the type of the function's return value. We will see the basic types in the

following section, where as other types will be covered in the upcoming chapters.

Integer Types

The following table provides the details of standard integer types with their storage sizes and value

ranges −

Type Storage size Value range

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 bytes -32,768 to 32,767

unsigned int 2 bytes 0 to 65,535

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long 8 bytes -2
32

 to +2
32

unsigned long 8 bytes 0 to +2
64

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

Floating-Point Types

The following table provide the details of standard floating-point types with storage sizes and value ranges and their
precision −

Type Storage
size

Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places

double 8 byte 2.3E-308 to 1.7E+308 15 decimal places

long
double

10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

C - Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical functions. C
language is rich in built-in operators and provides the following types of operators −

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

We will, in this chapter, look into the way each operator works.

Arithmetic Operators

The following table shows all the arithmetic operators supported by the C language. Assume variable A holds 10
and variable B holds 20 then −

Show Examples

Operator Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from the first. A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

% Modulus Operator and remainder of after an integer division. B % A = 0

++ Increment operator increases the integer value by one. A++ = 11

-- Decrement operator decreases the integer value by one. A-- = 9

https://www.tutorialspoint.com/cprogramming/c_arithmetic_operators.htm

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

Relational Operators

The following table shows all the relational operators supported by C. Assume variable

 A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

== Checks if the values of two operands are equal or not. If yes,
then the condition becomes true.

(A == B) is not true.

!= Checks if the values of two operands are equal or not. If the
values are not equal, then the condition becomes true.

(A != B) is true.

> Checks if the value of left operand is greater than the value of
right operand. If yes, then the condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than the value of
right operand. If yes, then the condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than or equal to
the value of right operand. If yes, then the condition becomes
true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or equal to the
value of right operand. If yes, then the condition becomes
true.

(A <= B) is true.

Logical Operators

Following table shows all the logical operators supported by C language. Assume variable A holds 1 and
variable B holds 0, then −

Show Examples

Operator Description Example

&& Called Logical AND operator. If both the operands
are non-zero, then the condition becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any of the two
operands is non-zero, then the condition becomes
true.

(A || B) is true.

! Called Logical NOT Operator. It is used to reverse
the logical state of its operand. If a condition is true,
then Logical NOT operator will make it false.

!(A && B) is true.

https://www.tutorialspoint.com/cprogramming/c_relational_operators.htm
https://www.tutorialspoint.com/cprogramming/c_logical_operators.htm

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation.

The truth tables for &, |, and ^ is as follows −

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Expressions in C

These are built from combinations of operators, let’s see them as described below.

1. Arithmetic Expressions

Addition (+), Subtraction(-), Multiplication(*), Division(/), Modulus(%), Increment(++) and Decrement(–) operators

are said to “Arithmetic expressions”. This operator works in between operands. like A+B, A-B, A–, A++ etc.

2. Relational Expressions

== (equal to), != (not equal to), != (not equal to), > (greater than), < (less than), >= (greater than or equal to), <=

(less than or equal to) operators are said to “Relational expressions”.This operators works in between operands. Used

for comparing purpose. Like A==B, A!=B, A>B, A<B etc

3. Logical Expressions

&&(Logical and), ||(Logical or) and !(Logical not) operators are said to “Logical expressions”. Used to perform a

logical operation. This operator works in between operands. Like A&&B, A||B,A!B etc.

4. Conditional Expressions

?(Question mark) and :(colon) are said to “Conditional expressions”. Used to perform a conditional check. It has 3

expressions first expression is condition. If it is true then execute expression2 and if it is false then execute

expression3. Like (A>B)?”A is Big”:”B is Big”.

Assignment Statement with Operators

The following table lists the assignment operators help us to built assignment statement

Show Examples

Operator Description Example of Assignment Statement

= Simple assignment operator. Assigns values
from right side operands to left side operand

C = A + B will assign the value of A + B
to C

+= Add AND assignment operator. It adds the
right operand to the left operand and assign
the result to the left operand.

C += A is equivalent to C = C + A

https://www.tutorialspoint.com/cprogramming/c_assignment_operators.htm

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

-= Subtract AND assignment operator. It
subtracts the right operand from the left
operand and assigns the result to the left
operand.

C -= A is equivalent to C = C - A

*= Multiply AND assignment operator. It
multiplies the right operand with the left
operand and assigns the result to the left
operand.

C *= A is equivalent to C = C * A

/= Divide AND assignment operator. It divides
the left operand with the right operand and
assigns the result to the left operand.

C /= A is equivalent to C = C / A

Control Structures- if Selection Statement

In decision control statements (if-else and nested if), group of statements are executed when

condition is true. If condition is false, then else part statements are executed.

There are 3 types of decision making control statements in C language. They are,

 Simple if statements

 if else statements

 nested if statements

Simple if statements

Syntax for each C decision control statements are

if (condition)

{

Statements;

}

In these type of statements, if condition is true, then respective block of code is executed.

Example

void main()

{

int m=40,n=40;

if (m == n)

{

printf("m and n are equal");

}

}

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

if … else statements

In these type of statements, group of statements are executed when condition is true. If condition is

false, then else part statements are executed.

Syntax:

if (condition)

{ Statement1; Statement2; }

else

{ Statement3; Statement4; }

Example

#include <stdio.h>

void main()

{

int m=40,n=20;

if (m == n)

{

printf("m and n are equal");

}

else

{

printf("m and n are not equal");

}

}

Nested If statements

If condition 1 is false, then condition 2 is checked and statements are executed if it is true. If

condition 2 also gets failure, then else part is executed.

Syntax:

if (condition1)

{

if(condition2){

Statement1…

}

} else

{

Statement2…

}

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

Example : Find largest number among 3 numbers

#include <stdio.h>

void main()

{

int a=23,b=45,c=34;

 if (a>b) {

 if(a>c)

printf("Large = %d",a);

 else

printf("Large = %d",c);

}else {

 if(b>c)

printf("Large = %d",b);

 else

printf("Large = %d",c);

}

getch();

}

Loop control statements
Loop control statements in C are used to perform looping operations until the given

condition is true. Control comes out of the loop statements once condition becomes false.

There are 3 types of loop control statements in C language. They are,

1. for

2. while

3. do-while

1. for loop

for loop is a statement which allows code to be repeatedly executed. For loop contains 3 parts

Initialization, Condition and Increment or Decrements.

Syntax

for (exp1; exp2; expr3)

{

statements;

}

Example

void main()

{

int i;

clrscr();

for(i=1;i<5;i++)

{

printf("\n%d",i);

}

getch();

}

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

2. do…while() loop

A do-while loop is similar to a while loop, except that a do-while loop is execute at least one

time.

A do while loop is a control flow statement that executes a block of code at least once, and then

repeatedly executes the block, or not, depending on a given condition at the end of the block (in

while).

Syntax

do {

statements;

}while (condition);

Example

void main()

{

int i;

i=1;

do

{

printf("\n%d",i);

i++;

}while(i<5);

getch(); }

Multi Branching Statement (Switch)

A switch statement allows a variable to be tested for equality against a list of values. Each value is

called a case, and the variable being switched on is checked for each switch case.

Syntax

The syntax for a switch statement in C programming language is as follows −

switch(expression) {

 case constant: statement(s);

 break;

 case constant : statement(s);

 break;

 default : statement(s);

}

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

#include <stdio.h>

int main () {

 /* local variable definition */

 char grade = 'B';

 switch(grade) {

 case 'A' :

 printf("Excellent!\n");

 break;

 case 'B' :

 case 'C' :

 printf("Well done\n");

 break;

 case 'D' :

 printf("You passed\n");

 break;

 case 'F' :

 printf("Better try again\n");

 break;

 default :

 printf("Invalid grade\n");

 }

 printf("Your grade is %c\n", grade);

 return 0;

}

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

When the above code is compiled and executed, it produces the following result −

Well done

Your grade is B

break and continue statements

C provides two commands to control how we loop:

 break -- exit form loop or switch.

 continue -- skip 1 iteration of loop.

You already have seen example of using break statement. Here is an example showing usage

of continue statement.

#include
main()

{

int i;

for(i = 0; i <= 5; i ++)

{

if(i == 3)

{

continue;

}

printf("Hello %d\n", i);

}

}

Output
Hello 0

Hello 1

Hello 2

Hello 4

Hello 5

In the above program when i value is 3 then control goes to the for loop again however it skip

the printf statement.

Difference Between break and continue

break continue

A break can appear in both switch and loop
(for, while, do) statements.

A continue can appear only in loop
(for, while, do) statements.

A break causes the control comes of the loop
or switch

A continue doesn't terminate the loop,
The control goes to beginning of the loop

The break statement can be used in
both switch and loop statements.

The continue statement can appear only in
loops.

A break causes the innermost enclosing loop
or switch to be exited immediately.

A continue inside a loop nested within
a switch causes the next loop iteration.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

Goto Statement

A goto statement in C programming provides an unconditional jump from the 'goto' to a

labeled statement in the same function.

NOTE − Use of goto statement is highly discouraged in any programming language

because it makes difficult to trace the control flow of a program, making the program hard to

understand and hard to modify. Any program that uses a goto can be rewritten to avoid them.

Syntax

The syntax for a goto statement in C is as follows −

goto label;

..

.

label: statement;

Example

#include <stdio.h>

void main () {

 int a = 0;

start:

 a = a + 1;

 printf("value of a: %d\n", a);

 if(a<15) goto start;

}

In the above example printf() function repeat without loop. Using goto we can transfer the

control at label location(start)

