INTRODUCTION TO PROBLEM SOLVING USING C
Module |

Introduction to Computers- Introduction to Programming - How to develop a program, Algorithms,
Flow-charts, Types of Programming Languages - Debugging, Types of errors - Techniques of Problem
Solving - Problem solving aspects - Top- Down aspects -Structured programming concepts.

Basic Concepts of Computer

Computer is an electronic device which is used to store the data, as per given
instructions it gives results quickly and accurately.

+ Data : Data is a raw material of information.
¢ Information : Proper collection of the data is called information.

Characteristics of Computer

1. Speed: - As you know computer can work very fast. It takes only few seconds for
calculations that we take hours to complete. You will be surprised to know that computer
can perform millions (1,000,000) of instructions and even more per second. Therefore, we
determine the speed of computer in terms of microsecond.

2. Accuracy: - The degree of accuracy of computer is very high and every calculation
Is performed with the same accuracy. The accuracy level is 7. determined on the basis of
design of computer. The errors in computer are due to human and inaccurate data.

3. Diligence: - A computer is free from tiredness, lack of concentration, fatigue, etc.
It can work for hours without creating any error. If millions of calculations are to be
performed, a computer will perform every calculation with the same accuracy. Due to this
capability it overpowers human being in routine type of work.

4. Versatility: - It means the capacity to perform completely different type of work.
You may use your computer to prepare payroll slips. Next moment you may use it for
inventory management or to prepare electric bills.

5. Power of Remembering: - Computer has the power of storing any amount of
information or data. Any information can be stored and recalled as long as you require it, for
any numbers of years. It depends entirely upon you how much data you want to store in a
computer and when to lose or retrieve these data.

6. No 1Q: - Computer is a dumb machine and it cannot do any work without
instruction from the user. It performs the instructions at tremendous speed and with
accuracy. It is you to decide what you want to do and in what sequence. So a computer
cannot take its own decision as you can.

7. Storage: - The Computer has an in-built memory where it can store a large amount
of data. You can also store data in secondary storage devices such as floppies, which can be
kept outside your computer and can be carried to other computers.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

Basic Computer Organization

Basic Elements of Computer System Basic elements of a computer system are
Mouse, Keyboard, monitor, memory, CPU, motherboard, Hard Disk, Speakers, Modem,
power supply and processor. Computer Organization The block diagram of computer is
shown in Fig. 1.1.

Memory Unit

vt

Inputunit | Control Unit __»| Output unit

v #

Arithmetic
Logic Unit

Fig. 1.1 Block diagram of Computer Organisation

The computer performs basically five major operations of functions irrespective of
their size and make. These are 1) it accepts data or instruction by way of input, 2) it stores
data, 3) it can process data as required by the user, 4) it gives results in the form of output,
and 5) it controls all operations inside a computer. We discuss below each of these
operations.

INPUT UNIT

Input unit accepts coded information from human operators through
electromechanical devices such as the keyboard or from other computers over digital
communication lines. The keyboard is wired so that whenever a key is pressed, the
corresponding letter or digit is automatically translated into its corresponding code and sent
directly to either the memory or the processor.

RAM is the primary memory of the computer. It can be used every time of computer
process the instruction. It is an active memory of the system. It holds the data temporarily. It
works high speed than other memory. However we are using RAM.

= Contains a large number of semiconductor cells each capable of storing one bit of
information

» These cells are processed in group of fixed size called words containing ,,n* bits. The
main memory is organized such that the contents of one word can be stored or retrieved
in one basic operation.

= For accessing data, a distinct address is associated with each word location.

= Data and programs must be in the primary memory for execution.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

PROCESSOR UNIT

= The heart of the computer system is the Processor unit.
= It consists of Arithmetic and Logic Unit and Control Unit.

Arithmetic and Logic Unit (ALU)

= Most computer operations (Arithmetical and logical) are executed in ALU of the
processor.

= For example: Suppose two numbers (operands) located in the main memory are to be
added. These operands are brought into arithmetic unit — actual addition is carried. The
result is then stored in the memory or retained in the processor itself for immediate use.

= Note that all operands may not reside in the main memory. Processor contains a number
of high speed storage elements called Registers, which may be used for temporary
storage of frequently used operands. Each register can store one word of data.

= Access times to registers are 5 to 10 times faster than access time to memory.

Control Unit

= The operations of all the units are coordinated by the control unity (act as the nerve
centre that sends control signal to other units)
= Timing signal that governs the 1/O transfers are generated by the Control Unit.
= Synchronization signals are also generated by the Control Unit
By selecting, interpreting and executing the program instructions the program instructions
the control unit is able to maintain order and direct the operation of the entire system

Storage Devices

Hard Disk, DVD, Pen Drive are the storage devices. It holds the data even switch off
the computer. So it is called as permanent memory.
Hard Disk: Hard disk is used to store data permanently on computer.

Optical Disks: The Optical Disks are also called as the CD-ROM's means Compact
Disk Read Only Memory DVD means Digital Versatile Disk which is also used for Storing
the data into the Disk and this is called as the Optical Disk.

CD —-700 MB DVD - 4.7 GB / 8.5 GB storage capacity.

Planning the Computer Program

Two write a correct program, a programmer must write each and every instruct in the
correct sequence

¢+ Logic (instruction sequence) of a program can be very complex

¢ Hence, programs must be planned before they are written to ensure program
instruction are:
» Appropriate for the problem
» In the correct sequence

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

http://ecomputernotes.com/fundamental/input-output-and-memory/explain-read-only-memory-what-are-the-types-of-rom

Algorithm

Algorithm is a set of well defined instructions in sequence to solve the problem.

Quialities of a good algorithm

Input and output should be defined precisely.

Each steps in algorithm should be clear and unambiguous.

Algorithm should be most effective among many different ways to solve a problem.

An algorithm shouldn’t have computer code. Instead, the algorithm should be written in
such a way that, it can be used in similar programming languages.

Examples Of Algorithms In Programming

Write an algorithm to add two numbers entered by user.
Step 1: Start
Step 2: Declare variables num1, num2 and sum.
Step 3: Read values num1 and numz2.
Step 4: Add numl and num2 and assign the result to sum.
sum<«—num/1-+num?2
Step 5: Display sum
Step 6: Stop

Write an algorithm to find the largest among three different numbers entered by
user.

Step 1: Start

Step 2: Declare variables a,b and c.

Step 3: Read variables a,b and c.

Step 4: If a>b If a>c Display a is the largest number. Else Display c is the largest
number. Else If b>c Display b is the largest number. Else Display c is the greatest
number.

Step 5: Stop

Advantages of algorithm

It is a step-wise representation of a solution to a given problem, which makes it easy
to understand. An algorithm uses a definite procedure. It is not dependent on any
programming language, so it is easy to understand for anyone even without
programming knowledge. Every step in an algorithm has its own logical sequence so it
is easy to debug. By using algorithm, the problem is broken down into smaller pieces or
steps hence, it is easier for programmer to convert it into an actual program

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

Flowchart

Flowchart is a pictorial representation of an algorithm.

flowchart symbol and it's usage.

The following table shows

Symbol Name Function
—_— Arrow Control Flow
] Oval Start / Stop
a4 Parallelogram Input / Output

|:| Rectangle Process / Calculation
<> Diamond Decision Making
Q Circle Connector

Example Flowchart to calculate Simple Interest

[Star]

A 4

Read P, N,

!

SI=P*N*R /100

Y

Print SI

'

{ Stop J

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

Types of Programming Languages
There are two types of programming languages, which can be categorized into the following ways:
1. Low level language
a) Machine language (1GL)
b) Assembly language (2GL)
2. High level language
a) Procedural-Oriented language (3GL)
b) Problem-Oriented language (4GL)
C) Natural language (5GL)
1. Low level language
This language is the most understandable language used by computer to perform its operations. It
can be further categorized into:
a) Machine Language (1GL)
Machine language consists of strings of binary numbers (i.e. 0s and 1s) and it is the only one
language, the processor directly understands. Machine language has an Merits of very fast execution speed
and efficient use of primary memory.

Merits:
> Itis directly understood by the processor so has faster execution time since the programs written in
this language need not to be translated.
It doesn’t need larger memory.
Demerits:

It is very difficult to program using 1GL since all the instructions are to be represented by Os and 1s.
Use of this language makes programming time consuming.
It is difficult to find error and to debug.
It can be used by experts only.
b) Assembly Language

Assembly language is also known as low-level language because to design a program programmer requires
detailed knowledge of hardware specification. This language uses mnemonics code (symbolic operation code like
‘ADD’ for addition) in place of Os and 1s. The program is converted into machine code by assembler. The resulting
program is reffered to as an object code.

VVVY 'V

Merits:
> Itis makes programming easier than 1GL since it uses mnemonics code for programming. Eg: ADD for
addition, SUB for subtraction, DIV for division, etc.
> It makes programming process faster.
» Error can be identified much easily compared to 1GL.
» Itis easier to debug than machine language.
Demerits:
> Programs written in this language is not directly understandable by computer so translators should be used.
» Itis hardware dependent language so programmers are forced to think in terms of computer’s architecture
rather than to the problem being solved.
» Being machine dependent language, programs written in this language are very less or not portable.
» Programmers must know its mnemonics codes to perform any task.
2. High level language
Instructions of this language closely resembles to human language or English like words. It uses
mathematical notations to perform the task. The high level language is easier to learn. It requires less time to write
and is easier to maintain the errors. The high level language is converted into machine language by one of the two
different languages translator programs; interpreter or compiler.

High level language can be further categorized as:

a) Procedural-Oriented language (3GL)

Procedural Programming is a methodology for modeling the problem being solved, by determining the steps
and the order of those steps that must be followed in order to reach a desired outcome or specific program state.
These languages are designed to express the logic and the procedure of a problem to be solved. It includes languages
such as Pascal, COBOL, C, FORTAN, etc.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

Merits:
» Because of their flexibility, procedural languages are able to solve a variety of problems.
» Programmer does not need to think in term of computer architecture which makes them focused on the
problem.
» Programs written in this language are portable.

Demerits:
» Itis easier but needs higher processor and larger memory.
> It needs to be translated therefore its execution time is more.

b) Problem Procedural- Oriented language (4GL)

It allows the users to specify what the output should be, without describing all the details of how the data
should be manipulated to produce the result. This is one step ahead from 3GL. These are result oriented and include
database query language.

Eg: Visual Basic, C#, PHP, etc.

The objectives of 4GL are to:
> Increase the speed of developing programs.
» Minimize user’s effort to botain information from computer.
» Reduce errors while writing programs.
Merits:
Programmer need not to think about the procedure of the program. So, programming is much easier.
Demerits:
It is easier but needs higher processor and larger memory.
It needs to be translated therefore its execution time is more.

c) Natural language (5GL)
Natural language are stil in developing stage where we could write statrments that would look like normal
sentences.

Merits:

Easy to program.

Since, the program uses normal sentences, they are easy to understand.
The programs designed using 5GL will have artificial intelligence (Al).
The programs would be much more interactive and interesting.

YVVY

Demerits:

It is slower than previous generation language as it should be completely translated into binary code
which is a tedious task.

Highly advanced and expensive electronic devices are required to run programs developed in 5GL.

vV VY

Therefore, it is an expensive approach.

What is Debugging?

Debugging is a methodical process of finding and reducing the number of bugs (or defects) in a
computer program, thus making it behave as originally expected.

There are two main types of errors that need debugging:

Compile-time: These occur due to misuse of language constructs, such as syntax errors.
Normally fairly easy to find by using compiler tools and warnings to fix reported problems.

Run-time: These are much harder to figure out, as they cause the program to generate incorrect
output (or “crash”) during execution. This lecture will examine how to methodically debug a run-
time error in your C code.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

Types of program errors
We distinguish between the following types of errors:

1. Syntax errors: errors due to the fact that the syntax of the language is
not respected.

2. Semantic errors: errors due to an improper use of program statements.
3. Logical errors: errors due to the fact that the specification is not respected.

From the point of view of when errors are detected, we distinguish:
1. Compile time errors: syntax errors and static semantic errors indicated by
the compiler.
2. Runtime errors: dynamic semantic errors, and logical errors, that cannot
be detected by the compiler (debugging).
Steps involved in Debugging

The different steps involved in the process of debugging are:

Find the Error Location

W

{ }/ %
* I & Prove the Analysis

Cover Lateral Damage

|dentify the Error Analyze the Error

Fix & Validate

1. Identify the Error: A bad identification of an error can lead to wasted developing
time. It is usual that production errors reported by users are hard to interpret and sometimes
the information we receive is misleading. It is import to identify the actual error.

2. Find the Error Location: After identifying the error correctly, you need to go
through the code to find the exact spot where the error is located. In this stage, you need to
focus on finding the error instead of understanding it.

3. Analyze the Error: In the third step, you need to use a bottom-up approach from
the error location and analyze the code. This helps you in understanding the error.
Analyzing a bug has two main goals, such as checking around the error for other errors to be
found, and to make sure about the risks of entering any collateral damage in the fix.

4. Prove the Analysis: Once you are done analyzing the original bug, you need to
find a few more errors that may appear on the application. This step is about writing
automated tests for these areas with the help of a test framework.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

9

5. Cover Lateral Damage: In this stage, you need to create or gather all the unit tests
for the code where you are going to make changes. Now, if you run these unit tests, they all
should pass.

6. Fix & Validate: The final stage is the fix all the errors and run all the test scripts to
check if they all pass.

Top-down Design

A top-down approach (also known as stepwise design) is essentially the breaking
down of a system to gain insight into the sub-systems that make it up. In a top-down
approach an overview of the system is formulated, specifying but not detailing any first-
level subsystems. Each subsystem is then refined in yet greater detail, sometimes in many
additional subsystem levels, until the entire specification is reduced to base elements.

l General outline l

/ \
I Output rcquiremem:]
[Body of algorithm]
/
I Subtask 1

Subtask 2 I

Structured programming is a programming paradigm aimed at improving the clarity,
quality, and development time of a computer program by making extensive use of the
structured control flow constructs of selection (if/then/else) and repetition (while and for),
block structures, and subroutines. Following the structured program theorem, all programs
are seen as composed of control structures:

% "Sequence"; ordered statements or subroutines executed in sequence.

+«» "Selection™; one or a number of statements is executed depending on the state of the
program. This is usually expressed with keywords such as if..then..else..endif.

+» "lteration"; a statement or block is executed until the program reaches a certain state, or
operations have been applied to every element of a collection. This is usually expressed
with keywords such as while, repeat, for or do..until. Often it is recommended that each
loop should only have one entry point (and in the original structural programming, also
only one exit point, and a few languages enforce this).

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

